Displaying all 4 publications

Abstract:
Sort:
  1. Tayyab S, Zaroog MS, Feroz SR, Mohamad SB, Malek SN
    Int J Pharm, 2015 Aug 1;491(1-2):352-8.
    PMID: 26142245 DOI: 10.1016/j.ijpharm.2015.06.042
    The interaction of tranilast (TRN), an antiallergic drug with the main drug transporter in human circulation, human serum albumin (HSA) was studied using isothermal titration calorimetry (ITC), fluorescence spectroscopy and in silico docking methods. ITC data revealed the binding constant and stoichiometry of binding as (3.21 ± 0.23) × 10(6)M(-1) and 0.80 ± 0.08, respectively, at 25°C. The values of the standard enthalpy change (ΔH°) and the standard entropy change (ΔS°) for the interaction were found as -25.2 ± 5.1 kJ mol(-1) and 46.9 ± 5.4 J mol(-1)K(-1), respectively. Both thermodynamic data and modeling results suggested the involvement of hydrogen bonding, hydrophobic and van der Waals forces in the complex formation. Three-dimensional fluorescence data of TRN-HSA complex demonstrated significant changes in the microenvironment around the protein fluorophores upon drug binding. Competitive drug displacement results as well as modeling data concluded the preferred binding site of TRN as Sudlow's site I on HSA.
    Matched MeSH terms: Anti-Allergic Agents/chemistry*
  2. Al-Qubaisi MS, Rasedee A, Flaifel MH, Eid EEM, Hussein-Al-Ali S, Alhassan FH, et al.
    Eur J Pharm Sci, 2019 May 15;133:167-182.
    PMID: 30902654 DOI: 10.1016/j.ejps.2019.03.015
    Thymoquinone is an effective phytochemical compound in the treatment of various diseases. However, its practical administration has been limited due to poor aqueous solubility and bioavailability. In this work, we developed a novel inclusion complex of thymoquinone and hydroxypropyl-β-cyclodextrin that features improved solubility and bioactivity. The drug solubility was markedly accelerated in the increasing ratio of hydroxypropyl-β-cyclodextrin to thymoquinone amount. The formation of the thymoquinone/hydroxypropyl-β-cyclodextrin inclusion complex was evidenced using X-ray diffraction, differential scanning calorimetry, thermal gravimetric analysis, Fourier transform infrared, scanning electron microscopy and nuclear magnetic resonance. The release behavior of the complex, as well as of their mixtures, was examined in artificial gastric (pH 1.2) and intestinal (pH 6.8) dissolution media. The formulated complex released the drug rapidly at the initial stage, followed by a slow release. Thermodynamic parameters ΔH, ΔS and ΔG were calculated with temperatures ranging from 20 to 45 °C to evaluate the complexation process. The activity of the inclusion complex was evaluated on IgE-mediated allergic response in rat basophilic leukemia (RBL-2H3) cells by monitoring key allergic mediators. The results revealed that compared with free thymoquinone, the inclusion complex more strongly inhibited the release of histamine, tumor necrosis factor-α, and interleukin-4, and was not cytotoxic at the tested thymoquinone concentrations (0.125-4 μg/mL) indicating the inclusion complex possibly had better antiallergic effects. Our finding suggested that the inclusion complex achieved prolonged action and reduced side-effect of thymoquinone.
    Matched MeSH terms: Anti-Allergic Agents/chemistry
  3. Abd Rani NZ, Kumolosasi E, Jasamai M, Jamal JA, Lam KW, Husain K
    BMC Complement Altern Med, 2019 Dec 11;19(1):361.
    PMID: 31829185 DOI: 10.1186/s12906-019-2776-1
    BACKGROUND: Moringa oleifera Lam. is a commonly used plant in herbal medicine and has various reported bioactivities such as antioxidant, antimicrobial, anticancer and antidiabetes. It is rich in nutrients and polyphenols. The plant also has been traditionally used for alleviating allergic conditions. This study was aimed to examine the anti-allergic activity of M. oleifera extracts and its isolated compounds.

    METHOD: M. oleifera leaves, seeds and pods were extracted with 80% of ethanol. Individual compounds were isolated using a column chromatographic technique and elucidated based on the nuclear magnetic resonance (NMR) and electrospray ionisation mass spectrometry (ESIMS) spectral data. The anti-allergic activity of the extracts, isolated compounds and ketotifen fumarate as a positive control was evaluated using rat basophilic leukaemia (RBL-2H3) cells for early and late phases of allergic reactions. The early phase was determined based on the inhibition of beta-hexosaminidase and histamine release; while the late phase was based on the inhibition of interleukin (IL-4) and tumour necrosis factor (TNF-α) release.

    RESULTS: Two new compounds; ethyl-(E)-undec-6-enoate (1) and 3,5,6-trihydroxy-2-(2,3,4,5,6-pentahydroxyphenyl)-4H-chromen-4-one (2) together with six known compounds; quercetin (3), kaempferol (4), β-sitosterol-3-O-glucoside (5), oleic acid (6), glucomoringin (7), 2,3,4-trihydroxybenzaldehyde (8) and stigmasterol (9) were isolated from M. oleifera extracts. All extracts and the isolated compounds inhibited mast cell degranulation by inhibiting beta-hexosaminidase and histamine release, as well as the release of IL-4 and TNF-α at varying levels compared with ketotifen fumarate.

    CONCLUSION: The study suggested that M. oleifera and its isolated compounds potentially have an anti-allergic activity by inhibiting both early and late phases of allergic reactions.

    Matched MeSH terms: Anti-Allergic Agents/chemistry
  4. Abd Rani NZ, Lam KW, Jalil J, Mohamad HF, Mat Ali MS, Husain K
    Molecules, 2021 Jan 28;26(3).
    PMID: 33525733 DOI: 10.3390/molecules26030695
    Phyllanthus amarus Schum. & Thonn. (Phyllanthaceae) is a medicinal plant that is commonly used to treat diseases such as asthma, diabetes, and anemia. This study aimed to examine the antiallergic activity of P. amarus extract and its compounds. The antiallergic activity was determined by measuring the concentration of allergy markers release from rat basophilic leukemia (RBL-2H3) cells with ketotifen fumarate as the positive control. As a result, P. amarus did not stabilize mast cell degranulation but exhibited antihistamine activity. The antihistamine activity was evaluated by conducting a competition radioligand binding assay on the histamine 1 receptor (H1R). Four compounds were identified from the high performance liquid chromatography (HPLC) analysis which were phyllanthin (1), hypophyllanthin (2), niranthin (3), and corilagin (4). To gain insights into the binding interactions of the most active compound hypophyllanthin (2), molecular docking was conducted and found that hypophyllanthin (2) exhibited favorable binding in the H1R binding site. In conclusion, P. amarus and hypophyllanthin (2) could potentially exhibit antiallergic activity by preventing the activation of the H1 receptor.
    Matched MeSH terms: Anti-Allergic Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links