Displaying all 7 publications

Abstract:
Sort:
  1. Fazalul Rahiman SS, Basir R, Talib H, Tie TH, Chuah YK, Jabbarzare M, et al.
    Trop Biomed, 2013 Dec;30(4):663-80.
    PMID: 24522137 MyJurnal
    Interleukin-27 (IL-27) has a pleiotropic role either as a pro-inflammatory or anti-inflammatory cytokine in inflammatory related diseases. The role and involvement of IL-27 during malaria was investigated and the effects of modulating its release on the production of major inflammatory cytokines and the histopathological consequences in major affected organs during the infection were evaluated. Results showed that IL-27 concentration was significantly elevated throughout the infection but no positive correlation with the parasitaemia development observed. Augmentation of IL-27 significantly elevated the release of anti-inflammatory cytokine, IL-10 whereas antagonising and neutralising IL-27 produced the opposite. A significant elevation of pro-inflammatory cytokines (IFN-γ and IL-6) was also observed, both during augmentation and inhibition of IL-27. Thus, it is suggested that IL-27 exerts an anti-inflammatory activity in the Th1 type response by signalling the production of IL-10 during malaria. Histopathological examination showed sequestration of PRBC in the microvasculature of major organs in malarial mice. Other significant histopathological changes include hyperplasia and hypertrophy of the Kupffer cells in the liver, hyaline membrane formation in lung tissue, enlargement of the white and red pulp followed by the disappearance of germinal centre of the spleen, and tubular vacuolation of the kidney tissues. In conclusion, it is suggested that IL-27 may possibly acts as an anti-inflammatory cytokine during the infection. Modulation of its release produced a positive impact on inflammatory cytokine production during the infection, suggesting its potential in malaria immunotherapy, in which the host may benefit from its inhibition.
    Matched MeSH terms: Animal Structures/pathology
  2. Kua BC, Choong FC, Hazreen Nita MK, Muhd Faizul H AH, Bhassu S, Imelda RR, et al.
    Trop Biomed, 2011 Apr;28(1):85-9.
    PMID: 21602773 MyJurnal
    A preliminary survey of parasitic and infectious hypodermal and haematopoietic necrosis virus (IHHNV) infections in giant freshwater prawn from the Damak Sea of Rejang River, Kuching, Sarawak was conducted. Symptoms of black spots/patches on the rostrum, carapace, pleopods or telson were observed in most of the 107 samples collected. Parasitic examination revealed sessiline peritrichs such as (Zoothamnium sp.), nematode larvae, gregarine stage and cocoon of leech with prevalences of 1.2%, 1.2%, 5% and 17% respectively. Under histopathological examination, changes like accumulation of hemocytes around hepatopancreatic tubules due to vibriosis, basophilic intranuclear inclusions in the epithelium and E-cell of hepatopancreatic tubules as a result of HPV were seen through the section. No positive infection of IHHNV was detected in 78 samples. As such, the wild giant freshwater prawns in Damak Sea of Rejang River in Kuching are IHHNV-free though infections of parvo-like virus and bacteria were seen in histopathology.
    Matched MeSH terms: Animal Structures/pathology
  3. Jothy SL, Zakaria Z, Chen Y, Lau YL, Latha LY, Sasidharan S
    Molecules, 2011 Jun 23;16(6):5268-82.
    PMID: 21701437 DOI: 10.3390/molecules16065268
    BACKGROUND AND OBJECTIVE: Cassia fistula is widely used in traditional medicine to treat various types of ailments. The evaluation of toxic properties of C. fistula is crucial when considering public health protection because exposure to plant extracts can result in undesirable effects on consumers. Hence, in this study the acute oral toxicity of C. fistula seeds extract was investigated in mice.

    RESULTS: Oral administration of crude extract at the highest dose of 5000 mg/kg resulted in no mortalities or evidence of adverse effects, implying that C. fistula in nontoxic. Throughout 14 days of the treatment no changes in behavioural pattern, clinical sign and body weight of mice in both control and treatment groups. Also there were no any significant elevations observed in the biochemical analysis of the blood serum. Further, histopathological examination revealed normal architecture and no significant adverse effects observed on the kidney, heart, liver, lung and spleen.

    CONCLUSIONS: Overall, the results suggest that, the oral administration of C. fistula methanolic seeds extract did not produce any significant toxic effect in mice. Hence, the extract can be utilized for pharmaceutical formulations.

    Matched MeSH terms: Animal Structures/pathology
  4. Hussein EA, Hair-Bejo M, Liew PS, Adamu L, Omar AR, Arshad SS, et al.
    Microb Pathog, 2019 Apr;129:195-205.
    PMID: 30738178 DOI: 10.1016/j.micpath.2019.01.049
    Infectious bursal disease is one of an OIE list of notifiable diseases. Chicken is the only host that manifests clinical signs and its pathogenicity is correlated with the distribution of antigens in organs. This study was conducted to determine disease pathogenesis and virus tissue tropism by in situ PCR, immunoperoxidase staining (IPS), and HE staining. Twenty four chickens were infected with very virulent Infectious Bursal Disease Virus (vvIBDV). Fifteen chickens were kept as a control group. Infected chickens were sacrificed at hrs 2, 4, 6, 12, days 1, 2, 4, and 6 post-inoculation (pi). While, control chickens were euthanized on days 0, 1, 2, 4, and 6 pi. Different tissues were collected, fixed in 10% buffered formalin, and processed. At hr 2 pi, virus was detected in intestinal, junction of the proventriculus and gizzard, cecal tonsil, liver, kidney, and bursa of Fabricius. At hr 4 pi, virus reached spleen, and at hr 6 pi, it entered thymus. At hr 12 pi, virus concentration increased in positive tissues. The latest invaded tissue was muscle on day 1 pi. Secondary viraemia occurred during 12-24 h pi. In situ PCR was the most sensitive technique to highlight obscure points of infection in this study.
    Matched MeSH terms: Animal Structures/pathology
  5. Osman AY, Abdullah FF, Kadir AA, Saharee AA
    Microb Pathog, 2016 Nov;100:17-29.
    PMID: 27591112 DOI: 10.1016/j.micpath.2016.08.019
    Brucella melitensis is one of the major zoonotic pathogens with significant economic implications worldwide. The pathogenicity is complex and not always well understood. Lipopolysaccharide (LPS) remains the major virulent factor of B. melitensis and responsible for the mechanism by which the pathogen causes its deleterious effects. In this study, 84 mice of 6-8 weeks old of both sexes were divided equally into 3 groups; namely Brucella melitensis infected group, lipopolysaccharide (LPS) infected group and control group. The former two groups contained 36 mice each with equal gender distribution. The control group consisted of 12 mice only. Animals in B. melitensis infected group, a single inoculum of 0.4 ml containing 10(9) of B. melitensis were intraperitoneally challenged while animals in LPS group, a single dose of 0.4 ml containing LPS extracted from the B. melitensis were intraperitoneally inoculated. Animals in control group received intraperitoneally, a single dose of 0.4 ml phosphate buffered saline (PBS) of pH7. Animals that were infected intraperitoneally with B. melitensis demonstrated significant clinical presentation; gross and histo-pathological evidence than LPS infected group. However, both infected groups showed elevated levels of interleukins (IL-1β and IL6), antibody levels (IgM an IgG) as early as 3 days post-infection with predominance in LPS infected group. In contrast, low levels of sex related hormonal changes in which LPS infected group showed the least concentration were also detected throughout the experimental period. In conclusion, B. melitensis can be transmitted via gastrointestinal, respiratory and reproductive tract. Moreover, LPS stimulated significantly the innate and acquired immune system without significant systemic dysfunction, suggesting potentiality of the protective properties of this component as alternative vaccine for brucellosis infection.
    Matched MeSH terms: Animal Structures/pathology
  6. Hussein EA, Hair-Bejo M, Omar AR, Arshad SS, Hani H, Balakrishnan KN, et al.
    Microb Pathog, 2019 Apr;129:213-223.
    PMID: 30771470 DOI: 10.1016/j.micpath.2019.02.017
    Limited deep studies are available in the field of early stages of pathogenesis of Newcastle disease virus (NDV) infection and tissue tropism of NDV. In this study, 24 specific pathogen free (SPF) chickens of white leghorn breed were infected with Newcastle disease (ND) by intranasal administration of 10⁵ 50% EID50/0.1 mL of velogenic NDV (vNDV). A second group of 15 chickens were kept as a control group. Chickens were monitored every day to record clinical signs. Infected chickens were euthanized by cervical dislocation at successive times, namely at hours (hrs) 2, 4, 6, 12, days 1, 2, 4, and 6 post-inoculation (pi). Whereas, control group chickens were euthanized on days 0, 1, 2, 4, and 6 pi. Tissues of brain, trachea, lung, caecal tonsil, liver, kidney, spleen, heart, proventriculus, intestine, and thymus were collected, fixed in 10% buffered formalin, embedded in paraffin, and sectioned. HS staining, immunoperoxidase staining (IPS) and in situ PCR were applied. It was concluded that at hr 2 pi, virus seemed to be inclined to trachea and respiratory tract. Meanwhile, it attacked caecal tonsils, intestine and bursa of Fabricus. While primary viraemia was ongoing, virus created footing in kidney and thymus. At hr 4 pi, proventriculus, liver, and spleen were attacked. However, at hr 6 pi, brain and heart were involved. Secondary viraemia probably started as early as hr 12 pi since all collected tissues were positive. Tissue tropism was determined in trachea, caecal tonsil, liver, bursa of Fabricius, intestine, proventriculus, lung, spleen, thymus, kidney, heart, and brain.
    Matched MeSH terms: Animal Structures/pathology
  7. See JX, Chandramathi S, Abdulla MA, Vadivelu J, Shankar EM
    PLoS Negl Trop Dis, 2017 Aug;11(8):e0005702.
    PMID: 28820897 DOI: 10.1371/journal.pntd.0005702
    BACKGROUND: Melioidosis is a neglected tropical disease endemic across South East Asia and Northern Australia. The etiological agent, Burkholderia pseudomallei (B.pseudomallei), is a Gram-negative, rod-shaped, motile bacterium residing in the soil and muddy water across endemic regions of the tropical world. The bacterium is known to cause persistent infections by remaining latent within host cells for prolonged duration. Reactivation of the recrudescent disease often occurs in elders whose immunity wanes. Moreover, recurrence rates in melioidosis patients can be up to ~13% despite appropriate antibiotic therapy, suggestive of bacterial persistence and inefficacy of antibiotic regimens. The mechanisms behind bacterial persistence in the host remain unclear, and hence understanding host immunity during persistent B. pseudomallei infections may help designing potential immunotherapy.

    METHODOLOGY/PRINCIPAL FINDINGS: A persistent infection was generated using a small-colony variant (SCV) and a wild-type (WT) B. pseudomallei in BALB/c mice via intranasal administration. Infected mice that survived for >60 days were sacrificed. Lungs, livers, spleens, and peripheral blood mononuclear cells were harvested for experimental investigations. Histopathological changes of organs were observed in the infected mice, suggestive of successful establishment of persistent infections. Moreover, natural killer (NK) cell frequency was increased in SCV- and WT-infected mice. We observed programmed death-1 (PD-1) upregulation on B cells of SCV- and WT-infected mice. Interestingly, PD-1 upregulation was only observed on NK cells and monocytes of SCV-infected mice. In contrast, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) downregulation was seen on NK cells of WT-infected mice, and on monocytes of SCV- and WT-infected mice.

    CONCLUSIONS/SIGNIFICANCE: The SCV and the WT of B. pseudomallei distinctly upregulated PD-1 expression on B cells, NK cells, and monocytes to dampen host immunity, which likely facilitates bacterial persistence. PD-1/PD-L1 pathway appears to play an important role in the persistence of B. pseudomallei in the host.

    Matched MeSH terms: Animal Structures/pathology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links