Displaying all 4 publications

Abstract:
Sort:
  1. Abba Y, Ilyasu YM, Noordin MM
    Microb Pathog, 2017 Jul;108:49-54.
    PMID: 28478198 DOI: 10.1016/j.micpath.2017.04.038
    AIM: Captivity of non-venomous snakes such as python and boa are common in zoos, aquariums and as pets in households. Poor captivity conditions expose these reptiles to numerous pathogens which may result in disease conditions. The purpose of this study was to investigate the common bacteria isolated from necropsied captive snakes in Malaysia over a five year period.

    MATERIALS AND METHODS: A total of 27 snake carcasses presented for necropsy at the Universiti Putra Malaysia (UPM) were used in this survey. Samples were aseptically obtained at necropsy from different organs/tissues (lung, liver, heart, kindey, oesophagus, lymph node, stomach, spinal cord, spleen, intestine) and cultured onto 5% blood and McConkey agar, respectively. Gram staining, morphological evaluation and biochemical test such as oxidase, catalase and coagulase were used to tentatively identify the presumptive bacterial isolates.

    RESULTS: Pythons had the highest number of cases (81.3%) followed by anaconda (14.8%) and boa (3.7%). Mixed infection accounted for 81.5% in all snakes and was highest in pythons (63%). However, single infection was only observed in pythons (18.5%). A total of 82.7%, 95.4% and 100% of the bacterial isolates from python, anaconda and boa, respectively were gram negative. Aeromonas spp was the most frequently isolated bacteria in pythons and anaconda with incidences of 25 (18%) and 8 (36.6%) with no difference (p > 0.05) in incidence, respectively, while Salmonella spp was the most frequently isolated in boa and significantly higher (p 

    Matched MeSH terms: Animal Structures/microbiology
  2. Osman AY, Kadir AA, Jesse FF, Saharee AA
    Microb Pathog, 2019 Nov;136:103669.
    PMID: 31445124 DOI: 10.1016/j.micpath.2019.103669
    Brucella melitensis is one of the leading zoonotic pathogens with significant economic implications in animal industry worldwide. Lipopolysaccharide, however, remains by far the major virulence with substantial role in diseases pathogenesis. Nonetheless, the effect of B. melitensis and its lipopolysaccharide on immunopathophysiological aspects largely remains an enigma. This study examines the effect of B.melitensis and its lipopolysaccharide on immunopathophysiological parameters following experimental infection using mouse model. Eighty four (n = 84) mice, BALB/c, both sexes with equal gender distribution and 6-8 weeks-old were randomly assigned into three groups. Group 1-2 (n = 72) were orally inoculated with 0.4 mL containing 109 CFU/mL of B. melitensis and its LPS, respectively. Group 3 (n = 12) was challenged orally with phosphate buffered saline and served as a control group. Animals were observed for clinical signs, haematological and histopathological analysis for a period of 24 days post-infection. We hereby report that B.melitensis infected group demonstrated significant clinical signs and histopathological changes than LPS infected group. However, both infected groups showed elevated levels of interleukins (IL-1β and IL-6) and antibody levels (IgM and IgG) with varying degrees of predominance in LPS infected group than B. melitensis infected group. For hormone analysis, low levels of progesterone, estradiol and testosterone were observed in both B. melitensis and LPS groups throughout the study period. Moreover, in B. melitensis infected group, the organism was re-isolated from the organs and tissues of gastrointestinal, respiratory and reproductive systems thereby confirming the infection and transmission dynamics. This report is the first detailed investigation comparing the infection progression and host responses in relation to the immunopathophysiological aspects in a mouse model after oral inoculation with B. melitensis and its lipopolysaccharide.
    Matched MeSH terms: Animal Structures/microbiology
  3. Osman AY, Saharee AA, Jesse FF, Kadir AA
    Microb Pathog, 2018 Mar;116:318-327.
    PMID: 29412161 DOI: 10.1016/j.micpath.2018.01.007
    Brucella melitensis is a major zoonotic pathogen in which lipopolysaccharide (LPS) is believed to play a major role in the diseases pathogenesis. To study the immunopathophysiological aspects, we established a mouse model experimentally infected with whole cell of B. melitensis and its lipopolysaccharide via subcutaneous route of exposure. Eighty four mice, BALB/c, both sexes with equal gender distribution and 6-8 weeks-old were randomly assigned into 3 groups. Group 1 (n = 36) were subcutaneoulsy inoculated with 0.4 mL 109 of B. melitensis while group 2 (n = 36) were subcutaneously challenged with 0.4 mL 109 of LPS. Group 3 (n = 12) was challenged subcuatneously with phosphate buffered saline and served as a control group. Animals were observed for clinical signs, haematological and histopathological analysis for a period of 24 days post-inoculation. Our results revealed that B. melitensis infected group demonstrated significant clinical signs and histopathological evidence than LPS infected group. However, both infected groups showed elevated levels of interleukins (IL-1β & IL6), antibody levels (IgM & IgG) as early as 3 days post-infection with predominance in LPS infected group. For hormone analysis, low levels of progesterone, estradiol and testosterone were observed in both B. melitensis and LPS challenged groups throughout the study period. Moreover, in B. melitensis infected groups, the organism was re-isolated from the organs and tissues of gastrointestinal, respiratory and reproductive systems; thereby confirming the possible transmission of the disease dynamics. Moreover, LPS stimulated significantly the innate and acquired immune system without significant systemic dysfunction suggesting the potentiality of the protective properties of this component as an alternative vaccine for brucellosis infection. This report is the first detailed investigation comparing the infection progression and host responses in relation to the immunopathophysiological aspects in mouse model after subcutaneous inoculation with B. melitensis and its lipopolysaccharide.
    Matched MeSH terms: Animal Structures/microbiology
  4. Sumathy V, Zakaria Z, Jothy SL, Gothai S, Vijayarathna S, Yoga Latha L, et al.
    Microb Pathog, 2014 Dec;77:7-12.
    PMID: 25457794 DOI: 10.1016/j.micpath.2014.10.004
    Invasive aspergillosis (IA) in immunocompromised host is a major infectious disease leading to reduce the survival rate of world population. Aspergillus niger is a causative agent causing IA. Cassia surattensis plant is commonly used in rural areas to treat various types of disease. C. surattensis flower extract was evaluated against the systemic aspergillosis model in this study. Qualitative measurement of fungal burden suggested a reduction pattern in the colony forming unit (CFU) of lung, liver, spleen and kidney for the extract treated group. Galactomannan assay assessment showed a decrease of fungal load in the treatment and positive control group with galactomannan index (GMI) value of 1.27 and 0.25 on day 28 but the negative control group showed high level of galactomannan in the serum with GMI value of 3.58. Histopathology examinations of the tissues featured major architecture modifications in the tissues of negative control group. Tissue reparation and recovery from infection were detected in extract treated and positive control group. Time killing fungicidal study of A. niger revealed dependence of the concentration of C. surattensis flower extract.
    Matched MeSH terms: Animal Structures/microbiology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links