Displaying all 13 publications

Abstract:
Sort:
  1. Gan R, Rosoman NP, Henshaw DJE, Noble EP, Georgius P, Sommerfeld N
    Med Hypotheses, 2020 Nov;144:110024.
    PMID: 32758871 DOI: 10.1016/j.mehy.2020.110024
    SARS-CoV-2, the agent of COVID-19, shares a lineage with SARS-CoV-1, and a common fatal pulmonary profile but with striking differences in presentation, clinical course, and response to treatment. In contrast to SARS-CoV-1 (SARS), COVID-19 has presented as an often bi-phasic, multi-organ pathology, with a proclivity for severe disease in the elderly and those with hypertension, diabetes and cardiovascular disease. Whilst death is usually related to respiratory collapse, autopsy reveals multi-organ pathology. Chronic pulmonary disease is underrepresented in the group with severe COVID-19. A commonality of aberrant renin angiotensin system (RAS) is suggested in the at-risk group. The identification of angiotensin-converting-enzyme 2 (ACE2) as the receptor allowing viral entry to cells precipitated our interest in the role of ACE2 in COVID-19 pathogenesis. We propose that COVID-19 is a viral multisystem disease, with dominant vascular pathology, mediated by global reduction in ACE2 function, pronounced in disease conditions with RAS bias toward angiotensin-converting-enzyme (ACE) over ACE2. It is further complicated by organ specific pathology related to loss of ACE2 expressing cells particularly affecting the endothelium, alveolus, glomerulus and cardiac microvasculature. The possible upregulation in ACE2 receptor expression may predispose individuals with aberrant RAS status to higher viral load on infection and relatively more cell loss. Relative ACE2 deficiency leads to enhanced and protracted tissue, and vessel exposure to angiotensin II, characterised by vasoconstriction, enhanced thrombosis, cell proliferation and recruitment, increased tissue permeability, and cytokine production (including IL-6) resulting in inflammation. Additionally, there is a profound loss of the "protective" angiotensin (1-7), a vasodilator with anti-inflammatory, anti-thrombotic, antiproliferative, antifibrotic, anti-arrhythmic, and antioxidant activity. Our model predicts global vascular insult related to direct endothelial cell damage, vasoconstriction and thrombosis with a disease specific cytokine profile related to angiotensin II rather than "cytokine storm". Our proposed mechanism of lung injury provides an explanation for early hypoxia without reduction in lung compliance and suggests a need for revision of treatment protocols to address vasoconstriction, thromboprophylaxis, and to minimize additional small airways and alveolar trauma via ventilation choice. Our model predicts long term sequelae of scarring/fibrosis in vessels, lungs, renal and cardiac tissue with protracted illness in at-risk individuals. It is hoped that our model stimulates review of current diagnostic and therapeutic intervention protocols, particularly with respect to early anticoagulation, vasodilatation and revision of ventilatory support choices.
    Matched MeSH terms: Angiotensin II/metabolism
  2. Mohd Sabri NA, Lee SK, Murugan DD, Ling WC
    Sci Rep, 2022 Oct 21;12(1):17633.
    PMID: 36271015 DOI: 10.1038/s41598-022-21107-5
    Epigallocatechin gallate (EGCG) has been shown to have antihypertensive activity. However, the role of epigallocatechin gallate (EGCG) in improving vascular function via modulation of endothelial nitric oxide synthase (eNOS) in hypertensive subjects is not well researched. Angiotensin II-infused hypertensive mice (8-10 weeks old) received EGCG (50 mg/kg/day) for 14 days via oral gavage. The arterial systolic blood pressure (SBP) was measured using the tail-cuff method every three days. At the end of the treatment, the vascular reactivity of the isolated aortae was studied using wire myographs. The level of nitric oxide (NO), cyclic guanosine monophosphate (cGMP) and tetrahydrobiopterine (BH4) were determined using assay kits while the presence of proteins (NOS, p-eNOS and NOx-2) were determined using by Western blotting. In vivo treatment with EGCG for 14 days significantly attenuated the increase in SBP, alleviated the vascular dysfunction, increased the vascular cGMP and BH4 level as well as the expression of p-eNOS and decreased elevated ROS level and NOx-2 protein in angiotensin II-infused hypertensive mice. Collectively, treatment with EGCG in hypertensive mice exerts a blood pressure lowering effect which is partly attributed to the improvement in the vascular function due to its ability to reduce vascular oxidative stress in the aortic tissue leading to a decrease in eNOS uncoupling thus increasing NO bioavailability.
    Matched MeSH terms: Angiotensin II/metabolism
  3. Singh HJ, Rahman A, Larmie ET, Nila A
    Placenta, 2004 Aug;25(7):631-6.
    PMID: 15193869
    The aim of the study was to ascertain if there was any difference in the levels of prorenin and active renin between pre-eclamptic and normotensive feto-placental tissues.
    Matched MeSH terms: Angiotensin II/metabolism
  4. Abdulla MH, Sattar MA, Abdullah NA, Johns EJ
    J Physiol Biochem, 2012 Sep;68(3):353-63.
    PMID: 22281695 DOI: 10.1007/s13105-012-0147-1
    The aim of this study is to assess the effects of losartan and carvedilol on metabolic parameters and renal haemodynamic responses to angiotensin II (Ang II) and adrenergic agonists in the model of fructose-fed rat. Thirty-six Sprague-Dawley rats were fed for 8 weeks either 20% fructose solution (F) or tap water (C) ad libitum. F or C group received either losartan or carvedilol (10 mg/kg p.o.) daily for the last 3 weeks of the study (FL and L) and (FCV and CV), respectively, then in acute studies the renal vasoconstrictor actions of Ang II, noradrenaline (NA), phenylephrine (PE) and methoxamine (ME) were determined. Data, mean±SEM were analysed using ANOVA with significance at P <0.05. Losartan and carvedilol decreased the area under the glucose tolerance curve of the fructose-fed group. The responses (%) to NA, PE, ME and Ang II in F were lower (P <0.05) than C (F vs. C, 17±2 vs. 38±3; 24±2 vs. 48±2; 12±2 vs. 34±2; 17±2 vs. 26±2), respectively. L had higher (P <0.05) responses to NA and PE while CV had blunted (P <0.05) responses to NA, PE and Ang II compared to C (L, CV vs. C, 47±3, 9±2 vs. 38±3; 61±3, 29±3 vs. 48±2; 16±3, 4±3 vs. 26±2), respectively. FL but not FCV group had enhanced (P <0.05) responses to NA, PE and ME compared to F (FL vs. F, 33±3 vs. 17±2; 45±3 vs. 24±2; 26±3 vs. 12±2), respectively. Losartan and carvedilol had an important ameliorating effect on fructose-induced insulin resistance. Losartan treatment could be an effective tool to restore normal vascular reactivity in the renal circulation of the fructose-fed rat.
    Matched MeSH terms: Angiotensin II/metabolism
  5. Balakumar P, Jagadeesh G
    Cell Signal, 2014 Oct;26(10):2147-60.
    PMID: 25007996 DOI: 10.1016/j.cellsig.2014.06.011
    Ang II, the primary effector pleiotropic hormone of the renin-angiotensin system (RAS) cascade, mediates physiological control of blood pressure and electrolyte balance through its action on vascular tone, aldosterone secretion, renal sodium absorption, water intake, sympathetic activity and vasopressin release. It affects the function of most of the organs far beyond blood pressure control including heart, blood vessels, kidney and brain, thus, causing both beneficial and deleterious effects. However, the protective axis of the RAS composed of ACE2, Ang (1-7), alamandine, and Mas and MargD receptors might oppose some harmful effects of Ang II and might promote beneficial cardiovascular effects. Newly identified RAS family peptides, Ang A and angioprotectin, further extend the complexities in understanding the cardiovascular physiopathology of RAS. Most of the diverse actions of Ang II are mediated by AT1 receptors, which couple to classical Gq/11 protein and activate multiple downstream signals, including PKC, ERK1/2, Raf, tyrosine kinases, receptor tyrosine kinases (EGFR, PDGF, insulin receptor), nuclear factor κB and reactive oxygen species (ROS). Receptor activation via G12/13 stimulates Rho-kinase, which causes vascular contraction and hypertrophy. The AT1 receptor activation also stimulates G protein-independent signaling pathways such as β-arrestin-mediated MAPK activation and Src-JAK/STAT. AT1 receptor-mediated activation of NADPH oxidase releases ROS, resulting in the activation of pro-inflammatory transcription factors and stimulation of small G proteins such as Ras, Rac and RhoA. The components of the RAS and the major Ang II-induced signaling cascades of AT1 receptors are reviewed.
    Matched MeSH terms: Angiotensin II/metabolism
  6. Balakumar P, Jagadeesh G
    J. Mol. Endocrinol., 2014 Oct;53(2):R71-92.
    PMID: 25013233 DOI: 10.1530/JME-14-0125
    The renin-angiotensin system (RAS) plays an important role in the pathophysiology of cardiovascular disorders. Pharmacologic interventions targeting the RAS cascade have led to the discovery of renin inhibitors, angiotensin-converting enzyme inhibitors, and AT(1) receptor blockers (ARBs) to treat hypertension and some cardiovascular and renal disorders. Mutagenesis and modeling studies have revealed that differential functional outcomes are the results of multiple active states conformed by the AT(1) receptor upon interaction with angiotensin II (Ang II). The binding of agonist is dependent on both extracellular and intramembrane regions of the receptor molecule, and as a consequence occupies more extensive area of the receptor than a non-peptide antagonist. Both agonist and antagonist bind to the same intramembrane regions to interfere with each other's binding to exhibit competitive, surmountable interaction. The nature of interactions with the amino acids in the receptor is different for each of the ARBs given the small differences in the molecular structure between drugs. AT(1) receptors attain different conformation states after binding various Ang II analogues, resulting in variable responses through activation of multiple signaling pathways. These include both classical and non-classical pathways mediated through growth factor receptor transactivations, and provide cross-communication between downstream signaling molecules. The structural requirements for AT(1) receptors to activate extracellular signal-regulated kinases 1 and 2 through G proteins, or G protein-independently through β-arrestin, are different. We review the structural and functional characteristics of Ang II and its analogs and antagonists, and their interaction with amino acid residues in the AT(1) receptor.
    Matched MeSH terms: Angiotensin II/metabolism
  7. Dharmani M, Mustafa MR, Achike FI, Sim MK
    Peptides, 2008 Oct;29(10):1773-80.
    PMID: 18603328 DOI: 10.1016/j.peptides.2008.05.017
    Angiotensin II is known to act primarily on the angiotensin AT(1) receptors to mediate its physiological and pathological actions. Des-aspartate-angiotensin I (DAA-I) is a bioactive angiotensin peptide and have been shown to have contrasting vascular actions to angiotensin II. Previous work in this laboratory has demonstrated an overwhelming vasodepressor modulation on angiotensin II-induced vasoconstriction by DAA-I. The present study investigated the involvement of the AT(1) receptor in the actions of DAA-I on angiotensin II-induced vascular actions in the renal vasculature of normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR) and streptozotocin (STZ)-induced diabetic rats. The findings revealed that the angiotensin receptor in rat kidney homogenate was mainly of the AT(1) subtype. The AT(1) receptor density was significantly higher in the kidney of the SHR. The increase in AT(1) receptor density was also confirmed by RT-PCR and Western blot analysis. In contrast, AT(1) receptor density was significantly reduced in the kidney of the streptozotocin-induced diabetic rat. Perfusion with 10(-9)M DAA-I reduced the AT(1) receptor density in the kidneys of WKY and SHR rats suggesting that the previously observed vasodepressor modulation of the nonapeptide could be due to down-regulation or internalization of AT(1) receptors. RT-PCR and Western blot analysis showed no significant changes in the content of AT(1) receptor mRNA and protein. This supports the suggestion that DAA-I causes internalization of AT(1) receptors. In the streptozotocin-induced diabetic rat, no significant changes in renal AT(1) receptor density and expression were seen when its kidneys were similarly perfused with DAA-I.
    Matched MeSH terms: Angiotensin II/metabolism
  8. Loewen SP, Paterson AR, Loh SY, Rogers MF, Hindmarch CCT, Murphy D, et al.
    Exp Physiol, 2017 11 01;102(11):1373-1379.
    PMID: 28762571 DOI: 10.1113/EP086436
    NEW FINDINGS: What is the topic of this review? We describe roles of crucial signalling molecules in the paraventricular nucleus of the hypothalamus and highlight recent data suggesting sex-specific changes in the expression of crucial signalling molecules and their receptors, which may underlie sex differences in both cardiovascular and metabolic function. What advances does it highlight? This review highlights the integrative capacity of the paraventricular nucleus in mediating cardiovascular and metabolic effects by integrating information from multiple signalling molecules. It also proposes that these signalling molecules have sex-specific differential gene expression, indicating the importance of considering these differences in our ongoing search to understand the female-male differences in the regulation of crucial autonomic systems. Many traditional cardiovascular hormones have been implicated in metabolic function. Conversely, many hormones traditionally involved in metabolic regulation have an effect on cardiovascular function. Many of these signalling molecules exert such effects through specific actions in the paraventricular nucleus, an integrative autonomic control centre located in the hypothalamus. Here, we focus on four cardiovascular/metabolic peptide hormones that signal within the paraventricular nucleus, namely angiotensin II, orexin, adiponectin and nesfatin-1. Each of these hormones has specific electrophysiological effects on paraventricular nucleus neurons that can be related to its physiological actions. In addition, we introduce preliminary transcriptomic data indicating that the genes for some of these hormones and their receptors have sex-specific differential expression.
    Matched MeSH terms: Angiotensin II/metabolism*
  9. Sunggip C, Nishimura A, Shimoda K, Numaga-Tomita T, Tsuda M, Nishida M
    Pharmacol Res, 2017 Jun;120:51-59.
    PMID: 28336370 DOI: 10.1016/j.phrs.2017.03.013
    Aging has a remarkable effect on cardiovascular homeostasis and it is known as the major non-modifiable risk factor in the development of hypertension. Medications targeting sympathetic nerve system and/or renin-angiotensin-aldosterone system are widely accepted as a powerful therapeutic strategy to improve hypertension, although the control rates remain unsatisfactory especially in the elder patients with hypertension. Purinergic receptors, activated by adenine, uridine nucleotides and nucleotide sugars, play pivotal roles in many biological processes, including platelet aggregation, neurotransmission and hormone release, and regulation of cardiovascular contractility. Since clopidogrel, a selective inhibitor of G protein-coupled purinergic P2Y12 receptor (P2Y12R), achieved clinical success as an anti-platelet drug, P2YRs has been attracted more attention as new therapeutic targets of cardiovascular diseases. We have revealed that UDP-responsive P2Y6R promoted angiotensin type 1 receptor (AT1R)-stimulated vascular remodeling in mice, in an age-dependent manner. Moreover, the age-related formation of heterodimer between AT1R and P2Y6R was disrupted by MRS2578, a P2Y6R-selective inhibitor. These findings suggest that P2Y6R is a therapeutic target to prevent age-related hypertension.
    Matched MeSH terms: Angiotensin II/metabolism
  10. Tee BH, Hoe SZ, Cheah SH, Lam SK
    Biomed Res Int, 2016;2016:1361508.
    PMID: 27800486 DOI: 10.1155/2016/1361508
    Although Eurycoma longifolia has been studied for erectile function, the blood pressure- (BP-) lowering effect has yet to be verified. Hence, this study aims at investigating the BP-lowering properties of the plant with a view to develop an antihypertensive agent that could also preserve erectile function. Ethanolic root extract was partitioned by hexane, dichloromethane (DCM), ethyl acetate, butanol, and water. The DCM fraction, found to be potent in relaxing phenylephrine- (PE-) precontracted rat aortic rings, was further purified by column chromatography. Subfraction DCM-II, being the most active in relaxing aortae, was studied for effects on the renin-angiotensin and kallikrein-kinin systems in aortic rings. The effect of DCM-II on angiotensin-converting enzyme (ACE) activity was also evaluated in vitro. Results showed that DCM-II reduced (p < 0.05) the contractions evoked by angiotensin I and angiotensin II (Ang II). In PE-precontracted rings treated with DCM-II, the Ang II-induced contraction was attenuated (p < 0.05) while bradykinin- (BK-) induced relaxation enhanced (p < 0.001). In vitro, DCM-II inhibited (p < 0.001) the activity of ACE. These data demonstrate that the vasodilatory effect of DCM-II appears to be mediated via inhibition of Ang II type 1 receptor and ACE as well as enhancement of Ang II type 2 receptor activation and BK activity.
    Matched MeSH terms: Angiotensin II/metabolism
  11. Abdulla MH, Sattar MA, Johns EJ, Abdullah NA, Hye Khan MA, Rathore HA
    Br J Nutr, 2012 Jan;107(2):218-28.
    PMID: 21733307 DOI: 10.1017/S0007114511002716
    The present study explored the hypothesis that a prolonged 8 weeks exposure to a high fructose intake suppresses adrenergic and angiotensin II (Ang II)-mediated vasoconstriction and is associated with a higher contribution of α1D-adrenoceptors. A total of thirty-two Sprague-Dawley rats received either 20 % fructose solution (FFR) or tap water (control, C) to drink ad libitum for 8 weeks. Metabolic and haemodynamic parameters were assessed weekly. The renal cortical vasoconstrictor responses to noradrenaline (NA), phenylephrine (PE), methoxamine (ME) and Ang II were determined in the presence and absence of BMY7378 (α1D-adrenoceptor antagonist). FFR had increased blood pressure, plasma levels of glucose, TAG and insulin. FFR expressed reduced renal vascular responses to adrenergic agonists and Ang II (NA: 50 %, PE: 50 %, ME, 65 %, Ang II: 54 %). Furthermore in the C group, the magnitude of the renal cortical vasoconstriction to all agonists was blunted in the presence of the low or high dose of BMY7378 (NA: 30 and 31 %, PE: 23 and 33 %, ME: 19 and 44 %, Ang II: 53 and 77 %), respectively, while in the FFR, vasoconstriction was enhanced to adrenergic agonists and reduced to Ang II (NA: 8 and 83 %, PE: 55 %, ME, 2 and 177 %, Ang II: 61 and 31 %). Chronic high fructose intake blunts vascular sensitivity to adrenergic agonists and Ang II. Moreover, blocking of the α1D-adrenoceptor subtype results in enhancement of renal vasoconstriction to adrenergic agonists, suggesting an inhibitory action of α1D-adrenoceptors in the FFR. α1D-Adrenoceptors buffer the AT1-receptor response in the renal vasculature of normal rats and fructose feeding suppressed this interaction.
    Matched MeSH terms: Angiotensin II/metabolism
  12. Hwong WY, Bots ML, Selvarajah S, Abdul Aziz Z, Sidek NN, Spiering W, et al.
    PLoS One, 2016;11(11):e0166524.
    PMID: 27846309 DOI: 10.1371/journal.pone.0166524
    BACKGROUND: The increase in angiotensin II (Ang II) formation by selected antihypertensive drugs is said to exhibit neuroprotective properties, but this translation into improvement in clinical outcomes has been inconclusive. We undertook a study to investigate the relationship between types of antihypertensive drugs used prior to a stroke event and ischemic stroke severity. We hypothesized that use of antihypertensive drugs that increase Ang II formation (Ang II increasers) would reduce ischemic stroke severity when compared to antihypertensive drugs that suppress Ang II formation (Ang II suppressors).

    METHODS: From the Malaysian National Neurology Registry, we included hypertensive patients with first ischemic stroke who presented within 48 hours from ictus. Antihypertensive drugs were divided into Ang II increasers (angiotensin-I receptor blockers (ARBs), calcium channel blockers (CCBs) and diuretics) and Ang II suppressors (angiotensin-converting-enzyme inhibitors (ACEIs) and beta blockers). We evaluated stroke severity during admission with the National Institute of Health Stroke Scale (NIHSS). We performed a multivariable logistic regression with the score being dichotomized at 15. Scores of less than 15 were categorized as less severe stroke.

    RESULTS: A total of 710 patients were included. ACEIs was the most commonly prescribed antihypertensive drug in patients using Ang II suppressors (74%) and CCBs, in patients prescribed with Ang II increasers at 77%. There was no significant difference in the severity of ischemic stroke between patients who were using Ang II increasers in comparison to patients with Ang II suppressors (OR: 1.32, 95%CI: 0.83-2.10, p = 0.24).

    CONCLUSION: In our study, we found that use of antihypertensive drugs that increase Ang II formation was not associated with less severe ischemic stroke as compared to use of antihypertensive drugs that suppress Ang II formation.

    Matched MeSH terms: Angiotensin II/metabolism*
  13. Abdulla MH, Sattar MA, Abdullah NA, Hye Khan MA, Anand Swarup KR, Johns EJ
    Eur J Nutr, 2011 Jun;50(4):251-60.
    PMID: 20882287 DOI: 10.1007/s00394-010-0133-8
    PURPOSE: Fructose feeding induces a moderate increase in blood pressure, insulin resistance, and hyperinsulinemia. This study investigated the role of α(1B)-adrenoceptor subtype in the control of renal hemodynamic responses to exogenously administered angiotensin II (Ang II) and a set of adrenergic agonists in a model of high fructose-fed rats.
    METHODS: Sprague-Dawley rats were fed for 8 weeks with 20% fructose in drinking water (FFR). The renal cortical vasoconstriction to noradrenaline (NA), phenylephrine (PE), methoxamine (ME) and Ang II in the presence and absence of chloroethylclonidine (CEC) (α(1B)-adrenoceptor antagonist) was determined. Data, mean ± SEM or SD were subjected to ANOVA with significance at p II. Furthermore, renal cortical vasoconstriction response to NA, PE, ME, and Ang II was blunted in the presence of CEC in control. While in FFR, renal cortical vasoconstriction to NA, PE, and ME was enhanced by CEC. Renal cortical vasoconstriction to Ang II in FFR was reduced in the presence of CEC.
    CONCLUSIONS: In the presence of a hyperinsulinemic state resulting from chronic and high fructose feeding, an attenuated AT(1) and α(1)-adrenoceptors response to Ang II and adrenergic stimuli respectively, is expected. In addition, α(1B)-adrenoceptor is the functional subtype that mediates renal cortical vasoconstriction in control rat, while high fructose feeding did influence the functionality of α(1B)-adrenoceptor in mediating the renal cortical hemodynamic changes.
    Matched MeSH terms: Angiotensin II/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links