Displaying all 3 publications

Abstract:
Sort:
  1. Hegedűs B, Kós PB, Bálint B, Maróti G, Gan HM, Perei K, et al.
    J Biotechnol, 2017 Jan 10;241:76-80.
    PMID: 27851894 DOI: 10.1016/j.jbiotec.2016.11.013
    Sulfanilic acid (4-aminobenzenesulfonic acid) is a sulfonated aromatic amine widely used in chemical industries for synthesis of various organic dyes and sulfa drugs. There are quite a few microbial co-cultures or single isolates capable of completely degrading this compound. Novosphingobium resinovorum SA1 was the first single bacterium which could utilize sulfanilic acid as its sole carbon, nitrogen and sulfur source. The strain has versatile catabolic routes for the bioconversion of numerous other aromatic compounds. Here, the complete genome sequence of the N. resinovorum SA1 strain is reported. The genome consists of a circular chromosome of 3.8 Mbp and four extrachromosomal elements between 67 and 1 759.8 kbp in size. Three alternative 3-ketoadipate pathways were identified on the plasmids. Sulfanilic acid is decomposed via a modified 3-ketoadipate pathway and the oxygenases involved form a phylogenetically separate branch on the tree. Sequence analysis of these elements might provide a genetic background for deeper insight into the versatile catabolic metabolism of various aromatic xenobiotics, including sulfanilic acid and its derivatives. Moreover, this is also a good model strain for understanding the role and evolution of multiple genetic elements within a single strain.
    Matched MeSH terms: Alphaproteobacteria/metabolism
  2. Huu Phong T, Van Thuoc D, Sudesh K
    Int J Biol Macromol, 2016 Mar;84:361-6.
    PMID: 26708435 DOI: 10.1016/j.ijbiomac.2015.12.037
    A halophilic bacterium isolated from mangrove soil sample in Northern Vietnam, Yangia sp. ND199 was found capable of producing homopolymer poly(3-hydroxybutyrate) [P(3HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], and copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from different carbon sources. The presence of 3HB, 3HV, and 4HB monomers were confirmed by gas chromatography and nuclear magnetic resonance analysis. Only P(3HB) was produced using carbon sources such as fructose or by a combination of fructose with 1,5-pentanediol, 1,6-hexanediol, sodium hexanoate, or sodium octanoate. The biosynthesis of P(3HB-co-3HV) was achieved by adding cosubstrates such as sodium valerate and sodium heptanoate. When 1,4-butanediol, γ-butyrolactone or sodium 4-hydroxybutyrate was added to the culture medium, P(3HB-co-4HB) containing 4.0-7.1mol% 4HB fraction was accumulated. The molecular weights and thermal properties of polyesters were determined by gel permeation chromatography and differential scanning calorimeter, respectively. The results showed that Yangia sp. ND199 is able to produce polyester with high weight average molecular weight ranging from 1.3×10(6) to 2.2×10(6) Dalton and number average molecular weight ranging from 4.2×10(5) to 6.9×10(5) Dalton. The molecular weights, glass transition temperature as well as melting temperature of homopolymer P(3HB) are higher than those of copolymer P(3HB-co-3HV) or P(3HB-co-4HB).
    Matched MeSH terms: Alphaproteobacteria/metabolism*
  3. Zhu F, Storey S, Ashaari MM, Clipson N, Doyle E
    Environ Sci Pollut Res Int, 2017 Feb;24(6):5404-5414.
    PMID: 28025788 DOI: 10.1007/s11356-016-8251-3
    Benzo(a)pyrene degradation was compared in soil that was either composted, incubated at a constant temperature of 22 °C, or incubated under a temperature regime typical of a composting process. After 84 days, significantly more (61%) benzo(a)pyrene was removed from composted soil compared to soils incubated at a constant temperature (29%) or at composting temperatures (46%). Molecular fingerprinting approaches indicated that in composted soils, bacterial community changes were driven by both temperature and organic amendment, while fungal community changes were primarily driven by temperature. Next-generation sequencing data revealed that the bacterial community in composted soil was dominated by Actinobacteria (order Actinomycetales), Firmicutes (class Bacilli), and Proteobacteria (classes Gammaproteobacteria and Alphaproteobacteria), regardless of whether benzo(a)pyrene was present or not. The relative abundance of unclassified Actinomycetales (Actinobacteria) was significantly higher in composted soil when degradation was occurring, indicating a potential role for these organisms in benzo(a)pyrene metabolism. This study provides baseline data for employing straw-based composting strategies for the removal of high molecular weight PAHs from soil and contributes to the knowledge of how microbial communities respond to incubation conditions and pollutant degradation.
    Matched MeSH terms: Alphaproteobacteria/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links