Gastrointestinal disturbances, such as nausea and vomiting, are considered amongst the main adverse effects associated with oral anticancer drugs due to their fast release in the gastrointestinal tract (GIT). Sustained release formulations with proper release profiles can overcome some side effects of conventional formulations. The current study was designed to prepare sustained release tablets of Capecitabine, which is approved by the Food and Drug Administration (FDA) for the treatment of advanced breast cancer, using hydroxypropyl methylcellulose (HPMC), carbomer934P, sodium alginate, and sodium bicarbonate. Tablets were prepared using the wet granulation method and characterized such that floating lag time, total floating time, hardness, friability, drug content, weight uniformity, and in vitro drug release were investigated. The sustained release tablets showed good hardness and passed the friability test. The tablets' floating lag time was determined to be 30-200 seconds, and it floated more than 24 hours and released the drug for 24 hours. Then, the stability test was done and compared with the initial samples. In conclusion, by adjusting the right ratios of the excipients including release-retarding gel-forming polymers like HPMC K4M, Na alginate, carbomer934P, and sodium bicarbonate, sustained release Capecitabine floating tablet was formulated.
Previously we developed and characterized a novel hydrogel film wound dressing containing Sodium Alginate and Pectin loaded with Simvastatin with multi-functional properties. This study investigated the in-vivo efficacy of the developed wound dressing on type I diabetic wound model. Experiments were performed on male Wistar rats for the period of 21-days. Animals developed diabetes after intraperitoneal injection (50 mg/kg) of Streptozotocin then randomly divided into different groups. On days 7, 14, and 21 of post-wounding, animals were euthanized and the wounds tissue were harvested for analysis. The wound healing rate, hematology and histological analysis, hydroxyproline assay, and Vascular Endothelial Growth Factor A measurements were noted. The results revealed that the wound dressing healed the wounded area significantly (p
Lactoferrin has been known to have antimicrobial properties. This research was conducted to investigate the toxicity of Alginate/EUDRAGIT® S 100-enclosed chitosan-calcium phosphate-loaded Fe-bLf nanocapsules (NCs) by in vitro and in vivo assays. Brine shrimp lethality assay showed that the LC50 value of NCs was more than 1mg/mL which indicated that NCs was not toxic to Brine shrimp. However, the LC50 values for the positive control potassium dichromate at 24h is 64.15μg/mL, which was demostrated the toxic effect against the brine shrimp. MTT cytotoxicity assay also revealed that NCs was not toxic against non-cancerous Vero cell line with IC50 values of 536μg/mL. Genotoxicity studies by comet assay on Vero cells revealed that NCs exerted no significant genotoxic at 100μg/mL without tail or shorter comet tail. Allium cepa root assay carried out at 125, 250, 500 and 1000μg/mL for 24h revealed that the NCs was destitute of significant genotoxic effect under experimental conditions. The results show that there is no significant difference (p>0.05) in mitotic index between the deionized water and NCs treated Allium cepa root tip cells. In conclusion, no toxicity was observed in NCs in this study. Therefore, nontoxic NCs has the good potential to develop as a therapeutic agent.