Displaying all 6 publications

Abstract:
Sort:
  1. Abubakar S, Shafee N
    Malays J Pathol, 2002 Jun;24(1):23-7.
    PMID: 16329552
    Dengue continues to be a major health threat to Malaysia a century after its first reported outbreak in 1902. Examination of the available outbreak data suggested that a major DF/DHF outbreak occurred in Malaysia in a cyclical pattern of approximately every 8 years. All four dengue virus serotypes are found co-circulating in Malaysia, but after the first and only major outbreak involving DEN-4 in 1960's, only DEN-1, DEN-2 and DEN-3 were associated with DF/DHF outbreaks. It is argued that perhaps the spread of the later dengue virus serotypes followed the pattern of spread of the mosquito vector Aedes aegypti, whereas the former was associated with Aedes albopictus, the outdoor and rural area dwelling mosquito. Estimating from the trend and pattern of dengue and the associated dengue virus serotypes, unless there is a major breakthrough in dengue vaccine development, it is likely that dengue outbreaks will continue to occur in Malaysia throughout the 21st century.
    Matched MeSH terms: Aedes/cytology
  2. Vythilingam I, Oda K, Tsuchie H, Mahadevan S, Vijayamalar B
    J Am Mosq Control Assoc, 1994 Jun;10(2 Pt 1):228-9.
    PMID: 8965071
    Isolation of Japanese encephalitis virus (JEV) from mosquitoes in Sabak Bernam, Selangor, Malaysia, was attempted. An aliquot of homogenate from each pool of mosquitoes, 50 per tube, was inoculated into Aedes albopictus clone C6/36 cells for virus isolation. Each cell culture was tested for the presence of viral antigen by immunoperoxidase staining using an anti-JEV polyclonal antibody. Out of 4 Culex sitiens mosquito pools, 2 pools were positive for JEV by cell culture. Presence of JEV genome in the cell cultures for Cx. sitiens was confirmed by using reverse transcriptase-polymerase chain reaction and JEV-specific primers. This is the first report on the isolation of JEV from Cx. sitiens.
    Matched MeSH terms: Aedes/cytology
  3. Thayan R, Morita K, Vijayamalar B, Zainah S, Chew TK, Oda K, et al.
    PMID: 9444025
    The aim of this study was to determine whether mutations could occur in the dengue virus genome following three subpassages of the virus in a mosquito cell line. This was done because sources of virus isolates used for sequencing studies are usually maintained in cell lines rather than in patients' sera. Therefore it must be assured that no mutation occurred during the passaging. For this purpose, sequencing was carried out using the polymerase chain reaction (PCR) products of the envelope/non-structural protein 1 junction region (280 nucleotides) of dengue type 3 virus. Sequence data were compared between the virus from a patient's serum against the virus subpassaged three times in the C6/36 cell line. We found that the sequence data of the virus from serum was identical to the virus that was subpassaged three times in C6/36 cell line.
    Matched MeSH terms: Aedes/cytology
  4. Abubakar S, Azila A, Suzana M, Chang LY
    Malays J Pathol, 2002 Jun;24(1):29-36.
    PMID: 16329553
    At least three major antigenic dengue 2 virus proteins were recognized by pooled dengue fever patients' sera in infected Aedes albopictus (C6/36) mosquito cells. Dengue virus envelope (E), premembrane (PrM) and non-structural protein 1 (NS 1) dimer were detected beginning on day 3 postinfection in both the cell membrane and cytosolic fractions. Using the patients' sera, the presence of antigenic intermediate core protein (C)-PrM and NS1-non-structural protein 2a (NS2a) in the cytoplasmic fraction of dengue 2 virus infected cells was revealed. The presence of a approximately 92 and approximately 84 kDa NS 1 dimer in the membrane (NS 1m) and cytosolic (NS 1c) fractions of C6/36 cells, respectively, was also recognized. Using individual patient's serum, it was further confirmed that all patients' sera contained antibodies that specifically recognized E, NS 1 and PrM present in the dengue 2 virus-infected cell membrane fractions, suggesting that these glycosylated virus proteins were the main antigenic proteins recognized in vivo. Detection of dengue 2 virus C antibody in some patients further suggested that C could be antigenic if presented in vivo.
    Matched MeSH terms: Aedes/cytology
  5. Cardosa MJ, Wang SM, Sum MS, Tio PH
    BMC Microbiol, 2002 May 5;2:9.
    PMID: 12019028
    In Southeast Asia, dengue viruses often co-circulate with other flaviviruses such as Japanese encephalitis virus, and due to the presence of shared antigenic epitopes it is often difficult to use serological methods to distinguish between previous infections by these flaviviruses.
    Matched MeSH terms: Aedes/cytology
  6. Scherret JH, Poidinger M, Mackenzie JS, Broom AK, Deubel V, Lipkin WI, et al.
    Emerg Infect Dis, 2001 Jul-Aug;7(4):697-705.
    PMID: 11585535
    Until recently, West Nile (WN) and Kunjin (KUN) viruses were classified as distinct types in the Flavivirus genus. However, genetic and antigenic studies on isolates of these two viruses indicate that the relationship between them is more complex. To better define this relationship, we performed sequence analyses on 32 isolates of KUN virus and 28 isolates of WN virus from different geographic areas, including a WN isolate from the recent outbreak in New York. Sequence comparisons showed that the KUN virus isolates from Australia were tightly grouped but that the WN virus isolates exhibited substantial divergence and could be differentiated into four distinct groups. KUN virus isolates from Australia were antigenically homologous and distinct from the WN isolates and a Malaysian KUN virus. Our results suggest that KUN and WN viruses comprise a group of closely related viruses that can be differentiated into subgroups on the basis of genetic and antigenic analyses.
    Matched MeSH terms: Aedes/cytology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links