MATERIALS AND METHODS: A DCN model was developed using pill images captured with mobile phones under unconstraint environments. The performance of the DCN model was compared to two baseline methods of hand-crafted features.
RESULTS: The DCN model outperforms the baseline methods. The mean accuracy rate of DCN at Top-1 return was 95.35%, whereas the mean accuracy rates of the two baseline methods were 89.00% and 70.65%, respectively. The mean accuracy rates of DCN for Top-5 and Top-10 returns, i.e., 98.75% and 99.55%, were also consistently higher than those of the baseline methods.
DISCUSSION: The images used in this study were captured at various angles and under different level of illumination. DCN model achieved high accuracy despite the suboptimal image quality.
CONCLUSION: The superior performance of DCN underscores the potential of Deep Learning model in the application of pill identification and verification.
METHODS: The paracetamol was encapsulated in beads, which were prepared mainly from alginate and chitosan through electrospray technique. The paracetamol beads were sprinkled on the instant jelly prepared from glycine, ι-carrageenan and calcium lactate gluconate. The paracetamol instant jelly characteristics, in terms of physical appearance, texture, rheology, in vitro drug release and palatability were assessed on a human volunteer.
RESULTS: The paracetamol instant jelly was easily reconstituted in 20 mL of water within 2 min to form jelly with acceptable consistency and texture. The jelly must be ingested within 30 min after reconstitution to avoid the bitter taste. The palatability assessment carried out on 12 human subjects established the similar palatability and texture of the paracetamol instant jelly dosage comparable to the commercial paracetamol suspension and was found to be even better in overcoming the aftertaste of paracetamol.
CONCLUSION: Such findings indicate that paracetamol instant jelly will compensate for the use of sweetening and flavoring agents as well as develop pediatric dosage forms with limited undesired excipients.
METHODS: The liquids were adsorbed on microcrystalline cellulose, and all developed formulations were compressed using 10.5 mm shallow concave round punches.
RESULTS: The resulting tablets were evaluated for different quality-control parameters at pre- and postcompression levels. Simvastatin showed better solubility in a mixture of oils and Tween 60 (10:1). All the developed formulations showed lower self-emulsification time (˂200 seconds) and higher cloud point (˃60°C). They were free of physical defects and had drug content within the acceptable range (98.5%-101%). The crushing strength of all formulations was in the range of 58-96 N, and the results of the friability test were within the range of USP (≤1). Disintegration time was within the official limits (NMT 15 min), and complete drug release was achieved within 30 min.
CONCLUSION: Using commonly available excipients and machinery, SEDDS-based tablets with better dissolution profile and bioavailability can be prepared by direct compression. These S-SEDDSs could be a better alternative to conventional tablets of simvastatin.
METHODS: The titration method was used to prepare LPV-loaded SNEDDS (LPV-SNEDDS). Six different pseudo-ternary phase diagrams were constructed to identify the nanoemulsifying region. The developed formulations were chosen in terms of globule size < 100 nm, dispersity ≤ 0.5, dispersibility (Grade A) and% transmittance > 85. Heating-cooling cycle, freeze-thaw cycle, and centrifugation studies were performed to confirm the stability of the developed SNEDDS.
RESULTS: The final LPV-SNEDDS (L-14) droplet size was 58.18 ± 0.62 nm, with polydispersity index, zeta potential, and entrapment efficiency (EE%) values of 0.326 ± 0.005, -22.08 ± 1.2 mV, and 98.93 ± 1.18%, respectively. According to high-resolution transmission electron microscopy (HRTEM) analysis, the droplets in the optimised formulation were < 60 nm in size. The selected SNEDDS released nearly 99% of the LPV within 30 min, which was significantly (p < 0.05) higher than the LPV-suspension in methylcellulose (0.5% w/v). It indicates the potential use of SNEDDS to enhance the solubility of LPV, which eventually could help improve the oral bioavailability of LPV. The Caco-2 cellular uptake study showed a significantly (p < 0.05) higher LPV uptake from the SNEEDS (LPV-SNEDDS-L-14) than the free LPV (LPV-suspension).
CONCLUSION: The LPV-SNEDDS could be a potential carrier for LPV oral delivery.
METHODS: This study utilised in-patient data from the case mix unit of Universiti Kebangsaan Malaysia Medical Centre (UKMMC) between 2011 and 2018. Direct medical costs of stroke were determined using a top-down costing approach and factors associated with costs were identified. Incremental cost effectiveness ratio (ICER) was calculated to compare the cost-effectiveness between DOACs and warfarin.
RESULTS: The direct medical cost of stroke was MYR 11,669,414.83 (n = 3689). AF-related stroke cases had higher median cost of MYR 2839.73 (IQR 2269.79-3101.52). Regression analysis showed that stroke type (AF versus non-AF stroke) (p = 0.013), stroke severity (p = 0.010) and discharge status (p < 0.001) significantly influenced stroke costs. DOACs were cost-effective compared to warfarin with an ICER of MYR 19.25.
CONCLUSIONS: The direct medical cost of stroke is substantial, with AF-stroke having a higher median cost per stroke care. DOACs were cost effective in the treatment of AF-related stroke in UKMMC.