Displaying all 9 publications

Abstract:
Sort:
  1. Uddin S, Islam MR, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M
    Molecules, 2023 Mar 27;28(7).
    PMID: 37049732 DOI: 10.3390/molecules28072969
    Transcutaneous vaccination is one of the successful, affordable, and patient-friendly advanced immunization approaches because of the presence of multiple immune-responsive cell types in the skin. However, in the absence of a preferable facilitator, the skin's outer layer is a strong impediment to delivering biologically active foreign particles. Lipid-based biocompatible ionic-liquid-mediated nanodrug carriers represent an expedient and distinct strategy to permit transdermal drug delivery; with acceptable surfactants, the performance of drug formulations might be further enhanced. For this purpose, we formulated a lipid-based nanovaccine using a conventional (cationic/anionic/nonionic) surfactant loaded with an antigenic protein and immunomodulator in its core to promote drug delivery by penetrating the skin and boosting drug delivery and immunogenic cell activity. In a follow-up investigation, a freeze-dry emulsification process was used to prepare the nanovaccine, and its transdermal delivery, pharmacokinetic parameters, and ability to activate autoimmune cells in the tumor microenvironment were studied in a tumor-budding C57BL/6N mouse model. These analyses were performed using ELISA, nuclei and HE staining, flow cytometry, and other biological techniques. The immunomodulator-containing nanovaccine significantly (p < 0.001) increased transdermal drug delivery and anticancer immune responses (IgG, IgG1, IgG2, CD8+, CD207+, and CD103+ expression) without causing cellular or biological toxicity. Using a nanovaccination approach, it is possible to create a more targeted and efficient delivery system for cancer antigens, thereby stimulating a stronger immune response compared with conventional aqueous formulations. This might lead to more effective therapeutic and preventative outcomes for patients with cancer.
    Matched MeSH terms: Adjuvants, Immunologic/pharmacology
  2. Andrišić M, Žarković I, Šandor K, Vujnović A, Perak Junaković E, Bendelja K, et al.
    Vet Immunol Immunopathol, 2022 Jan;243:110365.
    PMID: 34920287 DOI: 10.1016/j.vetimm.2021.110365
    Aujeszky's disease (AD) is a viral infectious disease caused by Suid herpesvirus 1 (SuHV-1). Vaccination and eradication of AD in domestic pigs is possible using marker vaccines with attenuated or inactivated SuHV-1, or subunit vaccines. However, vaccines with attenuated SuHV-1 have shown to be more potent in inducing strong cell-mediated immune response. The studies have shown that Parapoxvirus ovis, as well as Propionibacterium granulosum with lipopolysacharides (LPS) of Escherichia coli have pronounced immunomodulatory effects and that in combination with the vaccines can induce stronger humoral and cellular immune responses than use of vaccines alone. In our study distribution of peripheral blood T cell subpopulations was analysed after administration of vaccine alone (attenuated SuHV-1), immunostimulators (inactivated Parapoxvirus ovis or combination of an inactivated P. granulosum and detoxified LPS of E. coli) and combinations of vaccine with each immunostimulator to the 12-week old piglets. Throughout the study no significant changes were found in the proportions of γδ and most αβ T cell subpopulations analysed. However, on the seventh day of the study combination of an inactivated P. granulosum and LPS of E. coli with vaccine induced transient but significant increase of the proportions of CD4+CD8α+ and CD4-CD8α+ αβ T cells, that have been strongly associated with early protection of SuHV-1 infected pigs. Our findings indicate that combination of inactivated P. granulosum and detoxified E. coli LPS could be used for enhancement of a cellular immune response induced by vaccines against AD.
    Matched MeSH terms: Adjuvants, Immunologic/pharmacology*
  3. Amin ZA, Abdulla MA, Ali HM, Alshawsh MA, Qadir SW
    J Sci Food Agric, 2012 Jul;92(9):1874-7.
    PMID: 22231455 DOI: 10.1002/jsfa.5554
    Recently much attention has been paid to biologically active plants because of their low production cost and fewer adverse effects compared with chemical drugs. In the present investigation the bioactivity of Phyllanthus niruri ethanol and aqueous extracts was evaluated in vitro.
    Matched MeSH terms: Adjuvants, Immunologic/pharmacology*
  4. Camilloni B, Neri M, Lepri E, Iorio AM
    Vaccine, 2009 Jun 24;27(31):4099-103.
    PMID: 19410623 DOI: 10.1016/j.vaccine.2009.04.078
    This study evaluated whether MF59-adjuvanted subunit trivalent influenza vaccine for the 2003/04 winter season (A/Moscow/10/99, H3N2; A/New Caledonia/20/99, H1N1; B/Hong Kong/330/01) would confer protection against mismatched and frequently co-circulating variants of influenza B/Victoria- and B/Yamagata-like virus strains. Haemagglutination inhibiting (HI) antibodies were measured in middle-aged and elderly volunteers against the homologous B/Victoria-like vaccine strain (B/Hong Kong/330/01) and against mismatched B/Victoria-like (B/Malaysia/2506/04) and B/Yamagata-like (B/Singapore/379/99 and B/Shanghai/361/02) strains. Immunization induced significant increases in the amounts of HI antibodies against all influenza B strains under investigation. However, the responses against the heterologous B/Shanghai/361/02 virus did not reach the desirable values of seroprotection. An age-dependent decline of the responses was found for B/Victoria-like antigens, but not for B/Yamagata-like strains. Although further studies are needed, our data support the recommendation of including influenza B viruses of the B/Victoria and B/Yamagata lineages in the future influenza vaccine preparations.
    Matched MeSH terms: Adjuvants, Immunologic/pharmacology*
  5. Ahmad W, Jantan I, Kumolosasi E, Bukhari SN
    Drug Des Devel Ther, 2015;9:2961-73.
    PMID: 26089645 DOI: 10.2147/DDDT.S85405
    Tinospora crispa (TC) has been used in folkloric medicine for the treatment of various diseases and has been reported for several pharmacological activities. However, the effects of TC extract on the immune system are largely unknown. Therefore, the present study was aimed to investigate the immunomodulatory effects of a standardized 80% ethanol extract of the stem of TC on innate immune responses. Male Wistar Kyoto rats were treated daily at 100 mg/kg, 200 mg/kg, and 400 mg/kg doses of the extract for 21 days by oral gavage. The immunomodulatory potential of TC was evaluated by determining its effect on chemotaxis and phagocytic activity of neutrophils isolated from the blood of rats. To further elucidate the mechanism of action, its effects on the proliferation of T- and B-lymphocytes and T-lymphocytes subsets (CD4+ and CD8+) and on the secretion of Th1 and Th2 cytokines were also monitored. The main components of the extracts, syringin and magnoflorine, were identified and quantitatively analyzed in the extracts by using a validated reversed-phase high-performance liquid chromatography method. It was observed that the chemotactic activity of neutrophils obtained from extract-treated rats increased as compared to controls. A dose-dependent increase in the number of migrated cells and phagocytosis activity of neutrophils was observed. Dose-dependent increase was also observed in the T- and B-lymphocytes proliferation stimulated with concanavalin A (5 μg/mL) and lipopolysaccharide (10 μg/mL), and was statistically significant at 400 mg/kg (P>0.01). Apart from cell-mediated immune response, the concentrations of Th1 (TNF-α, IL-2, and IFN-γ) and Th2 (IL-4) cytokines were significantly increased in sera of rats treated with different doses as compared with the control group. From these findings, it can be concluded that TC possesses immunostimulatory activity and has therapeutic potential for the prevention of immune diseases.
    Matched MeSH terms: Adjuvants, Immunologic/pharmacology*
  6. Khairuddin N, Blake SJ, Firdaus F, Steptoe RJ, Behlke MA, Hertzog PJ, et al.
    Immunol Cell Biol, 2014 Feb;92(2):156-63.
    PMID: 24217808 DOI: 10.1038/icb.2013.75
    Small interfering RNAs (siRNAs) to inhibit oncogene expression and also to activate innate immune responses via Toll-like receptor (TLR) recognition have been shown to be beneficial as anti-cancer therapy in certain cancer models. In this study, we investigated the effects of local versus systemic delivery of such immune-stimulating Dicer-substrate siRNAs (IS-DsiRNAs) on a human papillomavirus (HPV)-driven tumour model. Localized siRNA delivery using intratumour injection of siRNA was able to increase siRNA delivery to the tumour compared with intravenous (IV) delivery and potently activated innate immune responses. However, IV injection remained the more effective delivery route for reducing tumour growth. Although IS-DsiRNAs activated innate immune cells and required interferon-α (IFNα) for full effect on tumour growth, we found that potent silencing siRNA acting independently of IFNα were overall more effective at inhibiting TC-1 tumour growth. Other published work utilising IS-siRNAs have been carried out on tumour models with low levels of major histocompatibility complex (MHC)-class 1, a target of natural killer cells that are potently activated by IS-siRNA. As TC-1 cells used in our study express high levels of MHC-class I, the addition of the immunostimulatory motifs may not be as beneficial in this particular tumour model. Our data suggest that selection of siRNA profile and delivery method based on tumour environment is crucial to developing siRNA-based therapies.
    Matched MeSH terms: Adjuvants, Immunologic/pharmacology*
  7. Alitheen NB, Manaf AA, Yeap SK, Shuhaimi M, Nordin L, Mashitoh AR
    Pharm Biol, 2010 Apr;48(4):446-52.
    PMID: 20645725 DOI: 10.3109/13880200903168031
    Morinda elliptica Ridley (Rubiaceae) has been used traditionally as a medicine to treat various diseases in Malaysia and southeast Asia. In the present study we investigated the immunomodulatory effects of damnacanthal isolated from the roots of Morinda elliptica. The immunomodulatory effect of this compound was evaluated by using the lymphocyte proliferation assay with mouse thymocytes and human peripheral blood mononuclear cells (PBMC). In addition, the effect of the compound on PBMC cell cycle progression was studied by using flow cytometry. The production of human interleukin-2 and human inteleukin-12 cytokines was also assessed using the enzyme linked immunosorbent assay (ELISA) technique. The lymphocyte proliferation assay showed that damnacanthal was able to activate mouse thymocytes and PBMC at a low concentration (0.468 microg/mL). Moreover, the production of human interleukin-2 and human interleukin-12 cytokines in the culture supernatant from damnacanthal activated lymphocytes was markedly up-regulated at 24 h and sustained until 72 h with a slight decrease with time. A positive correlation was found between the level of these two cytokines and the MTT-based proliferation assay. Based on the above results, damnacanthal can act as an immunomodulatory agent which may be very useful for maintaining a healthy immune system.
    Matched MeSH terms: Adjuvants, Immunologic/pharmacology*
  8. Israf DA, Lajis NH, Somchit MN, Sulaiman MR
    Life Sci, 2004 Jun 11;75(4):397-406.
    PMID: 15147827
    An experiment was conducted with the objective to enhance mucosal immunity against ovalbumin (OVA) by co-administration of OVA with an aqueous extract from the fruit of Solanum torvum (STE). Five groups of female ICR mice aged approximately 8 weeks at the commencement of the experiment were caged in groups of eight and received various treatments. The treatments included OVA alone, OVA with cholera toxin (CT), and OVA with various doses of STE. Mice were primed intraperitoneally with 500 microg of OVA alone or co-administered with 0.1 microg CT, or with 1 microg STE. All mice were boosted orally via gastric intubation 14 days after priming with 10 mg OVA alone, or co-administered with 10 microg CT or with 10 mg, 1 mg or 0.1 mg STE. One week later all mice were killed and organs obtained for analysis of the immune response. Intestinal, faecal and pulmonary OVA-specific sIgA concentration was significantly increased (p<0.05) in mice that received booster combinations of OVA/CT and OVA with all extract doses (p<0.05). Specific serum IgG titres did not differ significantly between groups. It is concluded that STE can significantly enhance secretory immunity in the intestine to OVA with mucosal homing to the lungs. The adjuvant effect of STE is comparable to that of CT.
    Matched MeSH terms: Adjuvants, Immunologic/pharmacology*
  9. Lim KL, Jazayeri SD, Yeap SK, Mohamed Alitheen NB, Bejo MH, Ideris A, et al.
    Res Vet Sci, 2013 Dec;95(3):1224-34.
    PMID: 23948357 DOI: 10.1016/j.rvsc.2013.07.013
    We had examined the immunogenicity of a series of plasmid DNAs which include neuraminidase (NA) and nucleoprotein (NP) genes from avian influenza virus (AIV). The interleukin-15 (IL-15) and interleukin-18 (IL-18) as genetic adjuvants were used for immunization in combination with the N1 and NP AIV genes. In the first trial, 8 groups of chickens were established with 10 specific-pathogen-free (SPF) chickens per group while, in the second trial 7 SPF chickens per group were used. The overall N1 enzyme-linked immunosorbent assay (ELISA) titer in chickens immunized with the pDis/N1+pDis/IL-15 was higher compared to the chickens immunized with the pDis/N1 and this suggesting that chicken IL-15 could play a role in enhancing the humoral immune response. Besides that, the chickens that were immunized at 14-day-old (Trial 2) showed a higher N1 antibody titer compared to the chickens that were immunized at 1-day-old (Trial 1). Despite the delayed in NP antibody responses, the chickens co-administrated with IL-15 were able to induce earlier and higher antibody response compared to the pDis/NP and pDis/NP+pDis/IL-18 inoculated groups. The pDis/N1+pDis/IL-15 inoculated chickens also induced higher CD8+ T cells increase than the pDis/N1 group in both trials (P<0.05). The flow cytometry results from both trials demonstrated that the pDis/N1+pDis/IL-18 groups were able to induce CD4+ T cells higher than the pDis/N1 group (P<0.05). Meanwhile, pDis/N1+pDis/IL-18 group was able to induce CD8+ T cells higher than the pDis/N1 group (P<0.05) in Trial 2 only. In the present study, pDis/NP was not significant (P>0.05) in inducing CD4+ and CD8+ T cells when co-administered with the pDis/IL-18 in both trials in comparison to the pDis/NP. Our data suggest that the pDis/N1+pDis/IL-15 combination has the potential to be used as a DNA vaccine against AIV in chickens.
    Matched MeSH terms: Adjuvants, Immunologic/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links