RESULTS: We use a network model of central metabolism and optimize the correspondence between relative changes in fluxes and in gene expression. To this end we apply the Least-squares with Equalities and Inequalities algorithm integrated with Flux Balance Analysis (Lsei-FBA). We predict for PD (1) decreases in glycolytic rate and oxygen consumption and an increase in lactate production in brain cortex that correspond with measurements (2) relative flux decreases in ATP synthesis, in the malate-aspartate shuttle and midway in the TCA cycle that are substantially larger than relative changes in glucose uptake in the substantia nigra, dopaminergic neurons and most other brain regions (3) shifts in redox shuttles between cytosol and mitochondria (4) in contrast to Alzheimer's disease: little activation of the gamma-aminobutyric acid shunt pathway in compensation for decreased alpha-ketoglutarate dehydrogenase activity (5) in the globus pallidus internus, metabolic fluxes are increased, reflecting increased functional activity.
CONCLUSION: Our method predicts metabolic changes from gene expression data that correspond in direction and order of magnitude with presently available experimental observations during Parkinson's disease, indicating that the hypothesis may be useful for some biochemical pathways. Lsei-FBA generates predictions of flux distributions in neurons and small brain regions for which accurate metabolic flux measurements are not yet possible.
METHODS: The synthesized pyrimidine scaffolds were screened for their antimicrobial activity by tube dilution method as well for antiproliferative activity (human colorectal (HCT116) cancer cell line) by SRB assay.
RESULTS: The antimicrobial screening results demonstrated that compounds, k6, k12, k14 and k20 were found to be the most potent ones against selected microbial species. The anticancer screening results indicated that compounds, k8 and k14 displayed potent anticancer activity against cancer cell line (HCT116).
CONCLUSION: Further, the molecular docking study carried to find out the interaction between active pyrimidine compounds with CDK-8 protein indicated that compound k14 showed best dock score with better potency within the ATP binding pocket and may be used as a lead for rational drug designing of the anticancer molecule.
Methods: For the optimisation and validation protocol, β-cells were plated onto 35 mm plastic petri dishes and maintained in RPMI-1640 media supplemented with 10 mM glucose, 10% FCS and 25 mM of N-2-hydroxyethylpiperazine-N-ethanesulfonic acid (HEPES). The treatment effects of 10 mM glucose and 30 μM fluoxetine on KATP channels NPo of β-cells were assessed via cell-attached patch-clamp recordings. For hippocampus cell experiments, hippocampi were harvested from day 17 of maternal Lister-hooded rat foetus, and then transferred to a Ca2+ and Mg2+-free HEPES-buffered Hank's salt solution (HHSS). The dissociated cells were cultured and plated onto a 25 mm round cover glasses coated with poly-d-lysine (0.1 mg/mL) in a petri dish. The KATP channels NPo of hippocampus cells when perfused with 1 mM and 10 mM of KA were determined.
Results: NPo of β-cells showed significant decreasing patterns (P < 0.001) when treated with 10 mM glucose 0.048 (0.027) as well as 30 μM fluoxetine 0.190 (0.141) as compared to basal counterpart. In hippocampus cell experiment, a significant increase (P < 0.001) in mean NPo 2.148 (0.175) of neurons when applied with 1 mM of KA as compared to basal was observed.
Conclusion: The two concentrations of KA used in the study exerted contrasting effects toward the mean of NPo. It is hypothesised that KA at lower concentration (1 mM) opens more KATP channels, leading to hyperpolarisation of the neurons, which may prevent neuronal hyper excitability. No effect was shown in 10 mM KA treatment, suggesting that only lower than 10 mM KA produced significant changes in KATP channels. This implies further validation of KA concentration to be used in the future.