RESEARCH DESIGN AND METHODS: NIDDM patients of Chinese, Indian, and Malay origin attending a diabetic clinic in Kuala Lumpur, Malaysia, were matched for age, sex, diabetes duration, and glycemic control (n = 34 in each group). Urinary albumin-to-creatinine ratio was measured in an early morning urine sample. Biochemical measurements included markers of the acute-phase response: serum sialic acid, triglyceride, and (lowered) HDL cholesterol.
RESULTS: The frequency of microalbuminuria did not differ among the Chinese, Indian, and Malay patients (44, 41, and 47%, respectively). In Chinese patients, those with microalbuminuria had evidence of an augmented acute-phase response, with higher serum sialic acid and triglyceride and lower HDL cholesterol levels; and urinary albumin-to-creatinine ratio was correlated with serum sialic acid and triglyceride. The acute-phase response markers were not different in Indians, with microalbuminuria being high in even the normoalbuminuric Indians; only the mean arterial blood pressure was correlated with urinary albumin-to-creatinine ratio in the Indians. Malay NIDDM subjects had an association of microalbuminuria with acute-phase markers, but this was weaker than in the Chinese subjects.
CONCLUSIONS: Microalbuminuria is associated with an acute-phase response in Chinese NIDDM patients in Malaysia, as previously found in Caucasian NIDDM subjects. Elevated urinary albumin excretion has different correlates in other racial groups, such as those originating from the Indian subcontinent. The acute-phase response may have an etiological role in microalbuminuria.
METHODS: Subjects were divided into two age groups-32 ± 2 (young) and 52 ± 2 (old) years old. Four subjects from each group were assigned with TRF (78% tocotrienol and 22% tocopherol, 150 mg/day) or placebo capsules for 6 months. Fasting plasma were obtained at 0, 3, and 6 months. Plasma tocopherol and tocotrienol levels were determined. Plasma proteome was resolved by 2DE, and differentially expressed proteins identified by MS. The expressions of three proteins were validated by Western blotting.
RESULTS: Six months of TRF supplementation significantly increased plasma levels of tocopherols and tocotrienols. Proteins identified as being differentially expressed were related to cholesterol homeostasis, acute-phase response, protease inhibitor, and immune response. The expressions of Apolipoprotein A-I precursor, Apolipoprotein E precursor, and C-reactive protein precursor were validated. The old groups showed more proteins changing in expression.
CONCLUSIONS: TRF appears to not only affect plasma levels of tocopherols and tocotrienols, but also the levels of plasma proteins. The identity of these proteins may provide insights into how TRF exerts its beneficial effects. They may also be potentially developed into biomarkers for the study of the effects and effectiveness of TRF supplementation.