Displaying all 2 publications

Abstract:
Sort:
  1. Ito N, Iwanaga H, Charles S, Diway B, Sabang J, Chong L, et al.
    Genes Genet Syst, 2017 Sep 12;92(1):1-20.
    PMID: 28003572 DOI: 10.1266/ggs.16-00013
    Geographical variation in soil bacterial community structure in 26 tropical forests in Southeast Asia (Malaysia, Indonesia and Singapore) and two temperate forests in Japan was investigated to elucidate the environmental factors and mechanisms that influence biogeography of soil bacterial diversity and composition. Despite substantial environmental differences, bacterial phyla were represented in similar proportions, with Acidobacteria and Proteobacteria the dominant phyla in all forests except one mangrove forest in Sarawak, although highly significant heterogeneity in frequency of individual phyla was detected among forests. In contrast, species diversity (α-diversity) differed to a much greater extent, being nearly six-fold higher in the mangrove forest (Chao1 index = 6,862) than in forests in Singapore and Sarawak (~1,250). In addition, natural mixed dipterocarp forests had lower species diversity than acacia and oil palm plantations, indicating that aboveground tree composition does not influence soil bacterial diversity. Shannon and Chao1 indices were correlated positively, implying that skewed operational taxonomic unit (OTU) distribution was associated with the abundance of overall and rare (singleton) OTUs. No OTUs were represented in all 28 forests, and forest-specific OTUs accounted for over 70% of all detected OTUs. Forests that were geographically adjacent and/or of the same forest type had similar bacterial species composition, and a positive correlation was detected between species divergence (β-diversity) and direct distance between forests. Both α- and β-diversities were correlated with soil pH. These results suggest that soil bacterial communities in different forests evolve largely independently of each other and that soil bacterial communities adapt to their local environment, modulated by bacterial dispersal (distance effect) and forest type. Therefore, we conclude that the biogeography of soil bacteria communities described here is non-random, reflecting the influences of contemporary environmental factors and evolutionary history.
    Matched MeSH terms: Acidobacteria/classification
  2. Miyashita NT
    Genes Genet Syst, 2015;90(2):61-77.
    PMID: 26399766 DOI: 10.1266/ggs.90.61
    Soil bacterial community structures of six dominant phyla (Acidobacteria, Proteobacteria, Verrucomicrobia, Planctomycetes, Bacteroidetes and Actinobacteria) and unclassified bacteria detected in tropical Sarawakian and temperate Japanese forests were compared based on 16S rRNA gene sequence variation. The class composition in each phylum was similar among the studied forests; however, significant heterogeneities of class frequencies were detected. Acidobacteria and Proteobacteria were the most dominant phyla in all six forests, but differed in the level of bacterial species diversity, pattern of species occurrence and association pattern of species composition with physicochemical properties in soil. Species diversity among Acidobacteria was approximately half that among Proteobacteria, based on the number of clusters and the Chao1 index, even though a similar number of sequence reads were obtained for these two phyla. In contrast, species diversity within Planctomycetes and Bacteroidetes was nearly as high as within Acidobacteria, despite many fewer sequence reads. The density of species (the number of sequence reads per cluster) correlated negatively with species diversity, and species density within Acidobacteria was approximately twice that within Proteobacteria. Although the percentage of forest-specific species was high for all bacterial groups, sampling site-specific species varied among bacterial groups, indicating limited inter-forest migration and differential movement of bacteria in forest soil. For five of the seven bacterial groups, including Acidobacteria, soil pH appeared to strongly influence species composition, but this association was not observed for Proteobacterial species. Topology of UPGMA trees and pattern of NMDS plots among the forests differed among the bacterial groups, suggesting that each bacterial group has adapted and evolved independently in each forest.
    Matched MeSH terms: Acidobacteria/classification
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links