Displaying all 5 publications

Abstract:
Sort:
  1. Gan HM, Triassi AJ, Wheatley MS, Savka MA, Hudson AO
    Genome Announc, 2014;2(2).
    PMID: 24625871 DOI: 10.1128/genomeA.00170-14
    Here we report the whole-genome sequences of three endophytic bacteria, Enterobacter sp. strain DC1, Enterobacter sp. strain DC3, and Enterobacter sp. strain DC4, from root tubers of the yellow yam plant, Dioscorea cayenensis. Preliminary analyses suggest that the genomes of the three bacteria contain genes involved in acetoin and indole-3-acetic acid metabolism.
    Matched MeSH terms: Acetoin
  2. Mohd Yusoff MZ, Akita H, Hassan MA, Fujimoto S, Yoshida M, Nakashima N, et al.
    Bioresour Technol, 2017 Dec;245(Pt A):1040-1048.
    PMID: 28946206 DOI: 10.1016/j.biortech.2017.08.131
    Acetoin is used in the biochemical, chemical and pharmaceutical industries. Several effective methods for acetoin production from petroleum-based substrates have been developed, but they all have an environmental impact and do not meet sustainability criteria. Here we describe a simple and efficient method for acetoin production from oil palm mesocarp fiber hydrolysate using engineered Escherichia coli. An optimization of culture conditions for acetoin production was carried out using reagent-grade chemicals. The final concentration reached 29.9gL(-1) with a theoretical yield of 79%. The optimal pretreatment conditions for preparing hydrolysate with higher sugar yields were then determined. When acetoin was produced using hydrolysate fortified with yeast extract, the theoretical yield reached 97% with an acetoin concentration of 15.5gL(-1). The acetoin productivity was 10-fold higher than that obtained using reagent-grade sugars. This approach makes use of a compromise strategy for effective utilization of oil palm biomass towards industrial application.
    Matched MeSH terms: Acetoin
  3. Lasekan O, Dabaj F, Muniandy M, Juhari NH, Lasekan A
    BMC Chem, 2021 Mar 13;15(1):16.
    PMID: 33714268 DOI: 10.1186/s13065-021-00743-4
    BACKGROUND: To evaluate the impact of cold fermentation time on bagel rolls, the key aroma-active compounds in the volatile fractions obtained from three different bagel rolls through solvent assisted flavor evaporation (SAFE) were sequentially characterized by an aroma extract dilution analysis (AEDA), quantified by stable isotope dilution and analyzed by odor activity values (OAVs) respectively.

    RESULTS: Findings revealed 40 aroma-active compounds with flavor dilution (FD) factor ranges of 2-1024. Of these, 22 compounds (FD ≥ 16) were quantified by stable isotope dilution assays (SIDA). Subsequent analysis of the 22 compounds by odor activity values (OAVs) revealed 14 compounds with OAVs ≥ 1 and the highest concentrations were obtained for 2,3-butanedione, 2-phenylethanol, 3-methylbutanal and acetoin respectively. Two recombination models of the bagels (i.e. 24 h and 48 h bagels) showed similarity to the corresponding bagels. Omission tests confirmed that 2,3-butanedione (buttery), acetoin (buttery), 2-acetyl-1-pyrroline (roasty), 5-methyl-2-furanmethanol (bread-like), (Z)-4-heptenal (biscuit-like) and 4-hydroxy-2,5-dimethyl-3(2H)-furanone, were the key aroma compounds. Additionally, acetic acid, butanoic acid, 2-phenylethanol (honey-like), 3-methylbutanoic acid, 2/3-methylbutanal, vanillin, 3-methylbutanol, methional were also important odorants of the bagel.

    CONCLUSION: Whilst the long, cold fermented bagels exhibited roasty, malty, buttery, baked potato-like, smoky and biscuit-like notes, the control bagels produced similar but less intense odor notes.

    Matched MeSH terms: Acetoin
  4. Nur Aimi, R., Abu Bakar, F., Dzulkifly, M.H.
    MyJurnal
    Nipa sap or air nira is a sweet natural beverage obtained from a type of palm tree, Nypa fruticans.
    It is readily and spontaneously fermented resulting in the development of alcoholic fermentation products. Objective of this study is to determine the volatile compounds (VOCs) responsible for the aroma in fresh and fermented nipa sap. The sap was left for natural fermentation at 30ºC for 63 days. VOCs of the sap were analysed using static headspace gas chromatography-mass spectrometry (GC-MS). Fresh nipa sap contained ethanol (83.43%), diacetyl (0.59%), and esters
    (15.97%). Fermented nipa sap contained alcohols (91.16 – 98.29%), esters (1.18 – 8.14%), acetoin (0.02 – 0.7%), diacetyl (0.04 – 0.06%), and acetic acid (0.13 – 0.68%). Concentration of ethanol in fresh nipa sap increased from 0.11% (v/v) to 6.63% (v/v) during the fermentation, and slightly decreased to 5.73% (v/v) at day 63. No higher alcohols were detected in the fresh nipa sap. Concentration of 1-propanol and 2-methylpropanol were constant throughout the fermentation with average of 0.004 to 0.006% (v/v) and 0.0001 to 0.0009% (v/v), respectively. 3-methylbutanol increased during the fermentation process. The highest concentration (0.001% v/v) was recorded at day 35. This study has shown differences in VOCs types between fresh and fermented nipa sap.
    Matched MeSH terms: Acetoin
  5. Ruzmi R, Ahmad-Hamdani MS, Mazlan N
    PLoS One, 2020;15(9):e0227397.
    PMID: 32925921 DOI: 10.1371/journal.pone.0227397
    The continuous and sole dependence on imidazolinone (IMI) herbicides for weedy rice control has led to the evolution of herbicide resistance in weedy rice populations across various countries growing IMI herbicide-resistant rice (IMI-rice), including Malaysia. A comprehensive study was conducted to elucidate occurrence, level, and mechanisms endowing resistance to IMI herbicides in putative resistant (R) weedy rice populations collected from three local Malaysian IMI-rice fields. Seed bioassay and whole-plant dose-response experiments were conducted using commercial IMI herbicides. Based on the resistance index (RI) quantification in both experiments, the cross-resistance pattern of R and susceptible (S) weedy rice populations and control rice varieties (IMI-rice variety MR220CL2 and non-IMI-rice variety MR219) to imazapic and imazapyr was determined. A molecular investigation was carried out by comparing the acetohydroxyacid synthase (AHAS) gene sequences of the R and S populations and the MR220CL2 and MR219 varieties. The AHAS gene sequences of R weedy rice were identical to those of MR220CL2, exhibiting a Ser-653-Asn substitution, which was absent in MR219 and S plants. In vitro assays were conducted using analytical grade IMI herbicides of imazapic (99.3%) and imazapyr (99.6%) at seven different concentrations. The results demonstrated that the AHAS enzyme extracted from the R populations and MR220CL2 was less sensitive to IMI herbicides than that from S and MR219, further supporting that IMI herbicide resistance was conferred by target-site mutation. In conclusion, IMI resistance in the selected populations of Malaysian weedy rice could be attributed to a Ser-653-Asn mutation that reduced the sensitivity of the target site to IMI herbicides. To our knowledge, this study is the first to show the resistance mechanism in weedy rice from Malaysian rice fields.
    Matched MeSH terms: Acetoin/analysis; Acetoin/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links