Displaying all 2 publications

Abstract:
Sort:
  1. Lew LC, Hor YY, Jaafar MH, Lau ASY, Ong JS, Chuah LO, et al.
    Benef Microbes, 2019 Dec 09;10(8):883-892.
    PMID: 31965837 DOI: 10.3920/BM2019.0058
    This study aimed to evaluate the anti-ageing effects of different strains of lactobacilli putative probiotics on an ageing rat model as induced by D-galactose and a high fat diet. Male Sprague-Dawley rats were fed with high fat diet (54% kcal fat) and injected with D-galactose daily for 12 weeks to induce ageing. The effects of putative probiotic strains on age-related impairment such as telomere length, plasma lipid peroxidation, hepatic 5'adenosine monophosphate-activated protein kinase (AMPK) expression, as well as endurance performance were evaluated. Administration of statin, Lactobacillus plantarum DR7 (LP-DR7), Lactobacillus fermentum DR9 (LF-DR9), and Lactobacillus reuteri 8513d (LR-8513d) significantly reduced the shortening of telomere and increased the expression of AMPK subunit-α1 (P<0.05). Plasma lipid peroxidation was lower (P<0.05) in groups administered with statin and LF-DR9 as compared to the control. AMPK subunit-α2 was elevated in rats administered with LP-DR7 as compared to the control (P<0.05). Using an in vivo ageing rat model, the current study has illustrated the potentials of lactobacilli putative probiotics in alleviation of age-related impairment in a strain-dependent manner.
    Matched MeSH terms: AMP-Activated Protein Kinases/genetics*
  2. Choy KW, Mustafa MR, Lau YS, Liu J, Murugan D, Lau CW, et al.
    Biochem Pharmacol, 2016 09 15;116:51-62.
    PMID: 27449753 DOI: 10.1016/j.bcp.2016.07.013
    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway.
    Matched MeSH terms: AMP-Activated Protein Kinases/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links