An effective electrode was developed based on electromembrane extraction (EME) and square wave voltammetry (SWV) for simultaneous separation, pre-concentration and determination of lead (II) (Pb(II)) ions in complex aqueous samples. Electrochemically reduced graphene oxide-graphite reinforced carbon (ErGO-GRC) was utilized in conjunction with the SWV. Pb(II) ions were extracted from an aqueous sample solution into an acidic acceptor phase (1M HCl) in the lumen of the polyvinylidene fluoride (PVDF) membrane bag by the application of voltage of maximum 6 V across the supported liquid membrane (SLM), consisting of organic solvent and di-(2-ethylhexyl)phosphoric acid (D2EHPA). The parameters affecting the EME were optimized for Pb(II) ions. The optimum EME conditions were found to be 20% D2EHPA in 1-octanol impregnated in the wall of PVDF membrane (PVDF17) as the SLM, extraction time of 20 min, pH of sample solution of 8 and a voltage of 5 V. The PVDF-ErGO-GRC electrode system attained enrichment factors of 40 times and 80% of extraction with relative standard deviations (n=5) of 8.3%. Good linearity ranging from 0.25 to 2 nM with coefficients correlation of 0.999 was obtained. The Pb(II) ions detection limit of PVDF-ErGO-GRC electrode was found to be 0.09 nM. The newly developed single setup electrochemical system was applied to complex aqueous samples such as tap, river and sea water to evaluate the feasibility of the method for applications.
A sustainable and stable supported liquid membrane (SLM) extraction of nickel was developed via impregnation of sustainable liquid membrane in the composite membrane support consisting of polyvinylidene fluoride (PVDF) and sulfonated poly (ether ether ketone) (SPEEK). Bis-2-ethylhexyl phosphate (D2EHPA), 1-octanol, refined palm oil and sulfuric acid were employed as extractant, synergist extractant, diluent and strippant, respectively. Variables studied including effect of refined palm oil compositions as well as the configurations and thicknesses of SPEEK. Lifespan of SLM was evaluated by recycling the composite membrane support. Results revealed that upon using 100% refined palm oil, about 100% of nickel was extracted and recovered in 10 and 14 h, respectively. Composite SPEEK/PVDF stabilized SLM by reducing liquid membrane loss from 47 to 23% upon applying SPEEK at the feed side of PVDF support. High permeability and flux values were obtained at 9.26 x 10-4 cms-1 and 6.48 x 10-7 molcm-2s-1 when increasing SPEEK thickness from 0.025 to 0.055 mm, respectively. The lifespan of SLM was extended up to ninth cycles with low weight loss percentage of the impregnated composite membrane (8%). In conclusion, the SPEEK/PVDF impregnated with refined palm oil has improved the stability of SLM extraction of nickel ions from industrial wastewater.
A three-phase hollow fiber liquid-phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1-octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 microL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H(3)PO(4), pH 3.0; organic solvent, 1-octanol; acceptor solution, 40 microL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05-0.30 mg/L with r(2)>0.9900 and LODs were in the range of 0.01-0.04 mg/L with RSDs of 1.25-2.32%. Excellent enrichment factors of up to 398-folds were obtained. It was found that the partition coefficient (K(a/d)) values were high for 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol and 2,6-dinitrophenol and that the individual partition coefficients (K(org/d) and K(a/org)) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.
Polycyclic aromatic hydrocarbons (PAHs) are hazardous and persistent organic pollutants that usually exist at low concentrations in the environment. In this study, dispersive liquid-liquid microextraction (DLLME) technique coupled with high performance liquid chromatography-fluorescence detection (HPLC-FD) was optimized for the analysis of selected PAHs, namely phenanthrene (PHE), fluoranthene (FLA) and benzo[a]pyrene (BaP) in apple juice. Under the optimal extraction conditions (the mixture of 200 µL of acetone and 50 µL of 1-octanol was applied to extract the selected PAHs for 1 min), the DLLME-HPLC-FD showed excellent linearity over the concentration range of 5 to 200 µg/L for both PHE and FLA, and 0.01 to 5 µg/L for BaP with correlation coefficients, r ≥ 0.9956. The method offered ultra-trace detection of selected PAHs in the range of 0.002 to 0.5 µg/L, and negligible matrix effects in determining selected PAHs with relative recovery average within the range of 92.6 to 109.6% in apple juice. The advantages of applying this method for the extraction of PAHs include rapidity, simple operation, as well as small consumption of organic extraction solvent, which is beneficial for routine analysis.
Two-phase micro-electrodriven membrane extraction (EME) procedure for the pre-concentration of selected non-steroidal anti-inflammatory drugs (NSAIDs) in aquatic matrices was investigated. Agarose film was used as interface between donor and acceptor phase in EME which allowed for selective extraction of the analytes prior to high performance liquid chromatography-ultraviolet detection. Charged analytes were transported from basic aqueous sample solution through agarose film into 1-octanol as an acceptor phase at 9 V potential. Response surface methodology in conjunction with the central composite design showed good correlations between extraction time and applied voltage (R2 > 0.9358). Under optimized extraction conditions, the method showed good linearity in the concentration range of 0.5-500 μg L-1 with coefficients of determination, r2≥ 0.9942 and good limits of detection (0.14-0.42 μg L-1) and limits of quantification (0.52-1.21 μg L-1). The results also showed high enrichment factors (62-86) and good relative recoveries (72-114%) with acceptable reproducibilities (RSDs ≤ 7.5% n = 3). The method was successfully applied to the determination of NSAIDs from tap water and river water samples. The proposed method proved to be rapid, simple and requires low voltage and minute amounts of organic solvent, thus environmentally friendly.
A capillary electrophoresis (CE)-capacitively coupled contactless conductivity detection (C(4)D) method for the simultaneous separation of eleven underivatized fatty acids (FAs), namely, lauric, myristic, tridecanoic (internal standard), pentadecanoic, palmitic, stearic, oleic, elaidic, linoleic, linolenic and arachidic acids is described. The separation was carried out in normal polarity mode at 20 °C, 30 kV and using hydrodynamic injection (50 mbar for 1 s). The separation was achieved in a bare fused-silica capillary (70 cm × 75 μm i.d.) using a background electrolyte of methyl-β-cyclodextrin (~6 mM) and heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (~8 mM) dissolved in a mixture of Na2HPO4/KH2PO4 (5 mM, pH 7.4):ACN:MeOH:n-octanol (3:4:2.5:0.5, v/v/v/v). C(4)D parameters were set at fixed amplitude of 100 V and frequency of 1000 kHz. The developed method was validated. Calibration curves of the ten FAs were well correlated (r(2)>0.99) within the range of 5-250 μg mL(-1) for lauric acid, and 3-250 μg mL(-1) for the other FAs. The method was simple and sensitive with detection limits (S/N=3) of 0.9-1.9 μg mL(-1) and good relative standard deviations of intra- and inter-day for migration times and peak areas (≤9.7%) were achieved. The method was applied to the determination of FAs in margarine samples. The proposed method offers distinct advantages over the GC and HPLC methods, especially in terms of simplicity (without derivatization) and sensitivity.