Displaying all 5 publications

Abstract:
Sort:
  1. De Silva AE, Kadir MA, Aziz MA, Kadzimin S
    ScientificWorldJournal, 2006 Feb 17;6:169-75.
    PMID: 16493521
    Differential effect of plant growth regulators and additives in proliferation of 18-month-old calli of Ananas comosus L. cv. Moris were assessed in vitro. The proliferation of callus relied on the growth regulators and additives. Of the different auxins supplemented in the Murashige and Skoog (MS) media, 32.22 microM alpha-naphthaleneacetic acid (NAA) gave the highest mean fresh weight of callus (46.817 g). Medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) was inferior to NAA, while b-naphthoxy acetic acid (BNOA) and p-chlorophenoxy acetic acid (4-CPA) were not effective in proliferating 18-months old callus. Addition of casein hydrolysate and coconut water to NAA supplemented medium showed better proliferation and production of callus. However, in terms of callus production, NAA at 32.22 microM was economically better.
  2. Takeuchi H, Savitzky AH, Ding L, de Silva A, Das I, Nguyen TT, et al.
    Ecol Evol, 2018 Oct;8(20):10219-10232.
    PMID: 30397460 DOI: 10.1002/ece3.4497
    A large body of evidence indicates that evolutionary innovations of novel organs have facilitated the subsequent diversification of species. Investigation of the evolutionary history of such organs should provide important clues for understanding the basis for species diversification. An Asian natricine snake, Rhabdophis tigrinus, possesses a series of unusual organs, called nuchal glands, which contain cardiotonic steroid toxins known as bufadienolides. Rhabdophis tigrinus sequesters bufadienolides from its toad prey and stores them in the nuchal glands as a defensive mechanism. Among more than 3,500 species of snakes, only 17 Asian natricine species are known to possess nuchal glands or their homologues. These 17 species belong to three nominal genera, Balanophis, Macropisthodon, and Rhabdophis. In Macropisthodon and Rhabdophis, however, species without nuchal glands also exist. To infer the evolutionary history of the nuchal glands, we investigated the molecular phylogenetic relationships among Asian natricine species with and without nuchal glands, based on variations in partial sequences of Mt-CYB, Cmos, and RAG1 (total 2,767 bp). Results show that all species with nuchal glands belong to a single clade (NGC). Therefore, we infer that the common ancestor of this clade possessed nuchal glands with no independent origins of the glands within the members. Our results also imply that some species have secondarily lost the glands. Given the estimated divergence time of related species, the ancestor of the nuchal gland clade emerged 19.18 mya. Our study shows that nuchal glands are fruitful subjects for exploring the evolution of novel organs. In addition, our analysis indicates that reevaluation of the taxonomic status of the genera Balanophis and Macropisthodon is required. We propose to assign all species belonging to the NGC to the genus Rhabdophis, pending further study.
  3. Gorin VA, Solovyeva EN, Hasan M, Okamiya H, Karunarathna DMSS, Pawangkhanant P, et al.
    PeerJ, 2020;8:e9411.
    PMID: 32685285 DOI: 10.7717/peerj.9411
    Frogs of the genus Microhyla include some of the world's smallest amphibians and represent the largest radiation of Asian microhylids, currently encompassing 50 species, distributed across the Oriental biogeographic region. The genus Microhyla remains one of the taxonomically most challenging groups of Asian frogs and was found to be paraphyletic with respect to large-sized fossorial Glyphoglossus. In this study we present a time-calibrated phylogeny for frogs in the genus Microhyla, and discuss taxonomy, historical biogeography, and morphological evolution of these frogs. Our updated phylogeny of the genus with nearly complete taxon sampling includes 48 nominal Microhyla species and several undescribed candidate species. Phylogenetic analyses of 3,207 bp of combined mtDNA and nuDNA data recovered three well-supported groups: the Glyphoglossus clade, Southeast Asian Microhyla II clade (includes M. annectens species group), and a diverse Microhyla I clade including all other species. Within the largest major clade of Microhyla are seven well-supported subclades that we identify as the M. achatina, M. fissipes, M. berdmorei, M. superciliaris, M. ornata, M. butleri, and M. palmipes species groups. The phylogenetic position of 12 poorly known Microhyla species is clarified for the first time. These phylogenetic results, along with molecular clock and ancestral area analyses, show the Microhyla-Glyphoglossus assemblage to have originated in Southeast Asia in the middle Eocene just after the first hypothesized land connections between the Indian Plate and the Asian mainland. While Glyphoglossus and Microhyla II remained within their ancestral ranges, Microhyla I expanded its distribution generally east to west, colonizing and diversifying through the Cenozoic. The Indian Subcontinent was colonized by members of five Microhyla species groups independently, starting with the end Oligocene-early Miocene that coincides with an onset of seasonally dry climates in South Asia. Body size evolution modeling suggests that four groups of Microhyla have independently achieved extreme miniaturization with adult body size below 15 mm. Three of the five smallest Microhyla species are obligate phytotelm-breeders and we argue that their peculiar reproductive biology may be a factor involved in miniaturization. Body size increases in Microhyla-Glyphoglossus seem to be associated with a burrowing adaptation to seasonally dry habitats. Species delimitation analyses suggest a vast underestimation of species richness and diversity in Microhyla and reveal 15-33 undescribed species. We revalidate M. nepenthicola, synonymize M. pulverata with M. marmorata, and provide insights on taxonomic statuses of a number of poorly known species. Further integrative studies, combining evidence from phylogeny, morphology, advertisement calls, and behavior will result in a better systematic understanding of this morphologically cryptic radiation of Asian frogs.
  4. Luedtke JA, Chanson J, Neam K, Hobin L, Maciel AO, Catenazzi A, et al.
    Nature, 2024 Jan;625(7993):E2.
    PMID: 38040869 DOI: 10.1038/s41586-023-06851-6
  5. Luedtke JA, Chanson J, Neam K, Hobin L, Maciel AO, Catenazzi A, et al.
    Nature, 2023 Oct;622(7982):308-314.
    PMID: 37794184 DOI: 10.1038/s41586-023-06578-4
    Systematic assessments of species extinction risk at regular intervals are necessary for informing conservation action1,2. Ongoing developments in taxonomy, threatening processes and research further underscore the need for reassessment3,4. Here we report the findings of the second Global Amphibian Assessment, evaluating 8,011 species for the International Union for Conservation of Nature Red List of Threatened Species. We find that amphibians are the most threatened vertebrate class (40.7% of species are globally threatened). The updated Red List Index shows that the status of amphibians is deteriorating globally, particularly for salamanders and in the Neotropics. Disease and habitat loss drove 91% of status deteriorations between 1980 and 2004. Ongoing and projected climate change effects are now of increasing concern, driving 39% of status deteriorations since 2004, followed by habitat loss (37%). Although signs of species recoveries incentivize immediate conservation action, scaled-up investment is urgently needed to reverse the current trends.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links