Displaying all 19 publications

Abstract:
Sort:
  1. Zulkifley MA, Moran B, Rawlinson D
    Sensors (Basel), 2012;12(5):5623-49.
    PMID: 22778605 DOI: 10.3390/s120505623
    Foreground detection has been used extensively in many applications such as people counting, traffic monitoring and face recognition. However, most of the existing detectors can only work under limited conditions. This happens because of the inability of the detector to distinguish foreground and background pixels, especially in complex situations. Our aim is to improve the robustness of foreground detection under sudden and gradual illumination change, colour similarity issue, moving background and shadow noise. Since it is hard to achieve robustness using a single model, we have combined several methods into an integrated system. The masked grey world algorithm is introduced to handle sudden illumination change. Colour co-occurrence modelling is then fused with the probabilistic edge-based background modelling. Colour co-occurrence modelling is good in filtering moving background and robust to gradual illumination change, while an edge-based modelling is used for solving a colour similarity problem. Finally, an extended conditional random field approach is used to filter out shadow and afterimage noise. Simulation results show that our algorithm performs better compared to the existing methods, which makes it suitable for higher-level applications.
  2. Zulkifley MA, Rawlinson D, Moran B
    Sensors (Basel), 2012;12(11):15638-70.
    PMID: 23202226 DOI: 10.3390/s121115638
    In video analytics, robust observation detection is very important as the content of the videos varies a lot, especially for tracking implementation. Contrary to the image processing field, the problems of blurring, moderate deformation, low illumination surroundings, illumination change and homogenous texture are normally encountered in video analytics. Patch-Based Observation Detection (PBOD) is developed to improve detection robustness to complex scenes by fusing both feature- and template-based recognition methods. While we believe that feature-based detectors are more distinctive,however, for finding the matching between the frames are best achieved by a collection of points as in template-based detectors. Two methods of PBOD-the deterministic and probabilistic approaches-have been tested to find the best mode of detection. Both algorithms start by building comparison vectors at each detected points of interest. The vectors are matched to build candidate patches based on their respective coordination. For the deterministic method, patch matching is done in 2-level test where threshold-based position and size smoothing are applied to the patch with the highest correlation value. Forthe second approach, patch matching is done probabilistically by modelling the histograms of the patches by Poisson distributions for both RGB and HSV colour models. Then,maximum likelihood is applied for position smoothing while a Bayesian approach is appliedfor size smoothing. The result showed that probabilistic PBOD outperforms the deterministic approach with average distance error of 10.03% compared with 21.03%. This algorithm is best implemented as a complement to other simpler detection methods due to heavy processing requirement.
  3. Abdani SR, Zulkifley MA, Zulkifley NH
    Diagnostics (Basel), 2021 Jun 17;11(6).
    PMID: 34204479 DOI: 10.3390/diagnostics11061104
    Pterygium is an eye condition that is prevalent among workers that are frequently exposed to sunlight radiation. However, most of them are not aware of this condition, which motivates many volunteers to set up health awareness booths to give them free health screening. As a result, a screening tool that can be operated on various platforms is needed to support the automated pterygium assessment. One of the crucial functions of this assessment is to extract the infected regions, which directly correlates with the severity levels. Hence, Group-PPM-Net is proposed by integrating a spatial pyramid pooling module (PPM) and group convolution to the deep learning segmentation network. The system uses a standard mobile phone camera input, which is then fed to a modified encoder-decoder convolutional neural network, inspired by a Fully Convolutional Dense Network that consists of a total of 11 dense blocks. A PPM is integrated into the network because of its multi-scale capability, which is useful for multi-scale tissue extraction. The shape of the tissues remains relatively constant, but the size will differ according to the severity levels. Moreover, group and shuffle convolution modules are also integrated at the decoder side of Group-PPM-Net by placing them at the starting layer of each dense block. The addition of these modules allows better correlation among the filters in each group, while the shuffle process increases channel variation that the filters can learn from. The results show that the proposed method obtains mean accuracy, mean intersection over union, Hausdorff distance, and Jaccard index performances of 0.9330, 0.8640, 11.5474, and 0.7966, respectively.
  4. Suriani NS, Hussain A, Zulkifley MA
    Sensors (Basel), 2013 Aug 05;13(8):9966-98.
    PMID: 23921828 DOI: 10.3390/s130809966
    Event recognition is one of the most active research areas in video surveillance fields. Advancement in event recognition systems mainly aims to provide convenience, safety and an efficient lifestyle for humanity. A precise, accurate and robust approach is necessary to enable event recognition systems to respond to sudden changes in various uncontrolled environments, such as the case of an emergency, physical threat and a fire or bomb alert. The performance of sudden event recognition systems depends heavily on the accuracy of low level processing, like detection, recognition, tracking and machine learning algorithms. This survey aims to detect and characterize a sudden event, which is a subset of an abnormal event in several video surveillance applications. This paper discusses the following in detail: (1) the importance of a sudden event over a general anomalous event; (2) frameworks used in sudden event recognition; (3) the requirements and comparative studies of a sudden event recognition system and (4) various decision-making approaches for sudden event recognition. The advantages and drawbacks of using 3D images from multiple cameras for real-time application are also discussed. The paper concludes with suggestions for future research directions in sudden event recognition.
  5. Zulkifley MA, Mustafa MM, Hussain A, Mustapha A, Ramli S
    PLoS One, 2014;9(12):e114518.
    PMID: 25485630 DOI: 10.1371/journal.pone.0114518
    Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET) is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster processing speed.
  6. Zulkifley MA, Behjati M, Nordin R, Zakaria MS
    Sensors (Basel), 2021 Apr 18;21(8).
    PMID: 33919486 DOI: 10.3390/s21082848
    Conventional and license-free radio-controlled drone activities are limited to a line-of-sight (LoS) operational range. One of the alternatives to operate the drones beyond the visual line-of-sight (BVLoS) range is replacing the drone wireless communications system from the conventional industrial, scientific, and medical (ISM) radio band to a licensed cellular-connected system. The Long Term Evolution (LTE) technology that has been established for the terrestrial area allows command-and-control and payload communications between drone and ground station in real-time. However, with increasing height above the ground, the radio environment changes, and utilizing terrestrial cellular networks for drone communications may face new challenges. In this regard, this paper aims to develop an LTE-based control system prototype for low altitude small drones and investigate the feasibility and performance of drone cellular connectivity at different altitudes with measuring parameters such as latency, handover, and signal strength. The measurement results have shown that by increasing flight height from ground to 170 m the received signal power and the signal quality levels were reduced by 20 dBm and 10 dB respectively, the downlink data rate decreased to 70%, and latency increased up to 94 ms. It is concluded that although the existing LTE network can provide a minimum requirement for drone cellular connectivity, further improvements are still needed to enhance aerial coverage, eliminate interference, and reduce network latency.
  7. Zulkifley MA, Abdani SR, Zulkifley NH, Shahrimin MI
    Diagnostics (Basel), 2021 Aug 19;11(8).
    PMID: 34441431 DOI: 10.3390/diagnostics11081497
    Since the start of the COVID-19 pandemic at the end of 2019, more than 170 million patients have been infected with the virus that has resulted in more than 3.8 million deaths all over the world. This disease is easily spreadable from one person to another even with minimal contact, even more for the latest mutations that are more deadly than its predecessor. Hence, COVID-19 needs to be diagnosed as early as possible to minimize the risk of spreading among the community. However, the laboratory results on the approved diagnosis method by the World Health Organization, the reverse transcription-polymerase chain reaction test, takes around a day to be processed, where a longer period is observed in the developing countries. Therefore, a fast screening method that is based on existing facilities should be developed to complement this diagnosis test, so that a suspected patient can be isolated in a quarantine center. In line with this motivation, deep learning techniques were explored to provide an automated COVID-19 screening system based on X-ray imaging. This imaging modality is chosen because of its low-cost procedures that are widely available even in many small clinics. A new convolutional neural network (CNN) model is proposed instead of utilizing pre-trained networks of the existing models. The proposed network, Residual-Shuffle-Net, comprises four stacks of the residual-shuffle unit followed by a spatial pyramid pooling (SPP) unit. The architecture of the residual-shuffle unit follows an hourglass design with reduced convolution filter size in the middle layer, where a shuffle operation is performed right after the split branches have been concatenated back. Shuffle operation forces the network to learn multiple sets of features relationship across various channels instead of a set of global features. The SPP unit, which is placed at the end of the network, allows the model to learn multi-scale features that are crucial to distinguish between the COVID-19 and other types of pneumonia cases. The proposed network is benchmarked with 12 other state-of-the-art CNN models that have been designed and tuned specially for COVID-19 detection. The experimental results show that the Residual-Shuffle-Net produced the best performance in terms of accuracy and specificity metrics with 0.97390 and 0.98695, respectively. The model is also considered as a lightweight model with slightly more than 2 million parameters, which makes it suitable for mobile-based applications. For future work, an attention mechanism can be integrated to target certain regions of interest in the X-ray images that are deemed to be more informative for COVID-19 diagnosis.
  8. Behjati M, Nordin R, Zulkifley MA, Abdullah NF
    Sensors (Basel), 2022 Nov 19;22(22).
    PMID: 36433554 DOI: 10.3390/s22228957
    This paper proposes an effective global path planning technique for cellular-connected UAVs to enhance the reliability of unmanned aerial vehicles' (UAVs) flights operating beyond the visual line of sight (BVLOS). Cellular networks are considered one of the leading enabler technologies to provide a ubiquitous and reliable communication link for UAVs. First, this paper investigates a reliable aerial zone based on an extensive aerial drive test in a 4G network within a suburban environment. Then, the path planning problem for the cellular-connected UAVs is formulated under communication link reliability and power consumption constraints. To provide a realistic optimization solution, all constraints of the optimization problem are defined based on real-world scenarios; in addition, the presence of static obstacles and no-fly zones is considered in the path planning problem. Two powerful intelligent optimization algorithms, the genetic algorithm (GA) and the particle swarm optimization (PSO) algorithm, are used to solve the defined optimization problem. Moreover, a combination of both algorithms, referred to as PSO-GA, is used to overcome the inherent shortcomings of the algorithms. The performances of the algorithms are compared under different scenarios in simulation environments. According to the statistical analysis of the aerial drive test, existing 4G base stations are able to provide reliable aerial coverage up to a radius of 500 m and a height of 85 m. The statistical analysis of the optimization results shows that PSO-GA is a more stable and effective algorithm to rapidly converge to a feasible solution for UAV path planning problems, with a far faster execution time compared with PSO and GA, about two times. To validate the performance of the proposed solution, the simulation results are compared with the real-world aerial drive test results. The results comparison proves the effectiveness of the proposed path planning method in suburban environments with 4G coverage. The proposed method can be extended by identifying the aerial link reliability of 5G networks to solve the UAV global path planning problem in the current 5G deployment.
  9. Mohamed NA, Zulkifley MA, Ibrahim AA, Aouache M
    Sensors (Basel), 2021 Sep 28;21(19).
    PMID: 34640803 DOI: 10.3390/s21196485
    In recent years, there has been an immense amount of research into fall event detection. Generally, a fall event is defined as a situation in which a person unintentionally drops down onto a lower surface. It is crucial to detect the occurrence of fall events as early as possible so that any severe fall consequences can be minimized. Nonetheless, a fall event is a sporadic incidence that occurs seldomly that is falsely detected due to a wide range of fall conditions and situations. Therefore, an automated fall frame detection system, which is referred to as the SmartConvFall is proposed to detect the exact fall frame in a video sequence. It is crucial to know the exact fall frame as it dictates the response time of the system to administer an early treatment to reduce the fall's negative consequences and related injuries. Henceforth, searching for the optimal training configurations is imperative to ensure the main goal of the SmartConvFall is achieved. The proposed SmartConvFall consists of two parts, which are object tracking and instantaneous fall frame detection modules that rely on deep learning representations. The first stage will track the object of interest using a fully convolutional neural network (CNN) tracker. Various training configurations such as optimizer, learning rate, mini-batch size, number of training samples, and region of interest are individually evaluated to determine the best configuration to produce the best tracker model. Meanwhile, the second module goal is to determine the exact instantaneous fall frame by modeling the continuous object trajectories using the Long Short-Term Memory (LSTM) network. Similarly, the LSTM model will undergo various training configurations that cover different types of features selection and the number of stacked layers. The exact instantaneous fall frame is determined using an assumption that a large movement difference with respect to the ground level along the vertical axis can be observed if a fall incident happened. The proposed SmartConvFall is a novel technique as most of the existing methods still relying on detection rather than the tracking module. The SmartConvFall outperforms the state-of-the-art trackers, namely TCNN and MDNET-N trackers, with the highest expected average overlap, robustness, and reliability metrics of 0.1619, 0.6323, and 0.7958, respectively. The SmartConvFall also managed to produce the lowest number of tracking failures with only 43 occasions. Moreover, a three-stack LSTM delivers the lowest mean error with approximately one second delay time in locating the exact instantaneous fall frame. Therefore, the proposed SmartConvFall has demonstrated its potential and suitability to be implemented for a real-time application that could help to avoid any crucial fall consequences such as death and internal bleeding if the early treatment can be administered.
  10. Mustapha A, Hussain A, Samad SA, Zulkifley MA, Diyana Wan Zaki WM, Hamid HA
    Biomed Eng Online, 2015;14:6.
    PMID: 25595511 DOI: 10.1186/1475-925X-14-6
    Content-based medical image retrieval (CBMIR) system enables medical practitioners to perform fast diagnosis through quantitative assessment of the visual information of various modalities.
  11. Abdul Karim R, Zakaria NF, Zulkifley MA, Mustafa MM, Sagap I, Md Latar NH
    Biomed Eng Online, 2013;12:21.
    PMID: 23496940 DOI: 10.1186/1475-925X-12-21
    Telepointer is a powerful tool in the telemedicine system that enhances the effectiveness of long-distance communication. Telepointer has been tested in telemedicine, and has potential to a big influence in improving quality of health care, especially in the rural area. A telepointer system works by sending additional information in the form of gesture that can convey more accurate instruction or information. It leads to more effective communication, precise diagnosis, and better decision by means of discussion and consultation between the expert and the junior clinicians. However, there is no review paper yet on the state of the art of the telepointer in telemedicine. This paper is intended to give the readers an overview of recent advancement of telepointer technology as a support tool in telemedicine. There are four most popular modes of telepointer system, namely cursor, hand, laser and sketching pointer. The result shows that telepointer technology has a huge potential for wider acceptance in real life applications, there are needs for more improvement in the real time positioning accuracy. More results from actual test (real patient) need to be reported. We believe that by addressing these two issues, telepointer technology will be embraced widely by researchers and practitioners.
  12. Behjati M, Mohd Noh AB, Alobaidy HAH, Zulkifley MA, Nordin R, Abdullah NF
    Sensors (Basel), 2021 Jul 26;21(15).
    PMID: 34372281 DOI: 10.3390/s21155044
    Currently, smart farming is considered an effective solution to enhance the productivity of farms; thereby, it has recently received broad interest from service providers to offer a wide range of applications, from pest identification to asset monitoring. Although the emergence of digital technologies, such as the Internet of Things (IoT) and low-power wide-area networks (LPWANs), has led to significant advances in the smart farming industry, farming operations still need more efficient solutions. On the other hand, the utilization of unmanned aerial vehicles (UAVs), also known as drones, is growing rapidly across many civil application domains. This paper aims to develop a farm monitoring system that incorporates UAV, LPWAN, and IoT technologies to transform the current farm management approach and aid farmers in obtaining actionable data from their farm operations. In this regard, an IoT-based water quality monitoring system was developed because water is an essential aspect in livestock development. Then, based on the Long-Range Wide-Area Network (LoRaWAN®) technology, a multi-channel LoRaWAN® gateway was developed and integrated into a vertical takeoff and landing drone to convey collected data from the sensors to the cloud for further analysis. In addition, to develop LoRaWAN®-based aerial communication, a series of measurements and simulations were performed under different configurations and scenarios. Finally, to enhance the efficiency of aerial-based data collection, the UAV path planning was optimized. Measurement results showed that the maximum achievable LoRa coverage when operating on-air via the drone is about 10 km, and the Longley-Rice irregular terrain model provides the most suitable path loss model for the scenario of large-scale farms, and a multi-channel gateway with a spreading factor of 12 provides the most reliable communication link at a high drone speed (up to 95 km/h). Simulation results showed that the developed system can overcome the coverage limitation of LoRaWAN® and it can establish a reliable communication link over large-scale wireless sensor networks. In addition, it was shown that by optimizing flight paths, aerial data collection could be performed in a much shorter time than industrial mission planning (up to four times in our case).
  13. Zedan MJM, Zulkifley MA, Ibrahim AA, Moubark AM, Kamari NAM, Abdani SR
    Diagnostics (Basel), 2023 Jun 26;13(13).
    PMID: 37443574 DOI: 10.3390/diagnostics13132180
    Glaucoma is a chronic eye disease that may lead to permanent vision loss if it is not diagnosed and treated at an early stage. The disease originates from an irregular behavior in the drainage flow of the eye that eventually leads to an increase in intraocular pressure, which in the severe stage of the disease deteriorates the optic nerve head and leads to vision loss. Medical follow-ups to observe the retinal area are needed periodically by ophthalmologists, who require an extensive degree of skill and experience to interpret the results appropriately. To improve on this issue, algorithms based on deep learning techniques have been designed to screen and diagnose glaucoma based on retinal fundus image input and to analyze images of the optic nerve and retinal structures. Therefore, the objective of this paper is to provide a systematic analysis of 52 state-of-the-art relevant studies on the screening and diagnosis of glaucoma, which include a particular dataset used in the development of the algorithms, performance metrics, and modalities employed in each article. Furthermore, this review analyzes and evaluates the used methods and compares their strengths and weaknesses in an organized manner. It also explored a wide range of diagnostic procedures, such as image pre-processing, localization, classification, and segmentation. In conclusion, automated glaucoma diagnosis has shown considerable promise when deep learning algorithms are applied. Such algorithms could increase the accuracy and efficiency of glaucoma diagnosis in a better and faster manner.
  14. Saleh A, Zulkifley MA, Harun HH, Gaudreault F, Davison I, Spraggon M
    Heliyon, 2024 Jan 15;10(1):e23127.
    PMID: 38163175 DOI: 10.1016/j.heliyon.2023.e23127
    This review aims to critically examine the existing state-of-the-art forest fire detection systems that are based on deep learning methods. In general, forest fire incidences bring significant negative impact to the economy, environment, and society. One of the crucial mitigation actions that needs to be readied is an effective forest fire detection system that are able to automatically notify the relevant parties on the incidence of forest fire as early as possible. This review paper has examined in details 37 research articles that have implemented deep learning (DL) model for forest fire detection, which were published between January 2018 and 2023. In this paper, in depth analysis has been performed to identify the quantity and type of data that includes images and video datasets, as well as data augmentation methods and the deep model architecture. This paper is structured into five subsections, each of which focuses on a specific application of deep learning (DL) in the context of forest fire detection. These subsections include 1) classification, 2) detection, 3) detection and classification, 4) segmentation, and 5) segmentation and classification. To compare the model's performance, the methods were evaluated using comprehensive metrics like accuracy, mean average precision (mAP), F1-Score, mean pixel accuracy (MPA), etc. From the findings, of the usage of DL models for forest fire surveillance systems have yielded favourable outcomes, whereby the majority of studies managed to achieve accuracy rates that exceeds 90%. To further enhance the efficacy of these models, future research can explore the optimal fine-tuning of the hyper-parameters, integrate various satellite data, implement generative data augmentation techniques, and refine the DL model architecture. In conclusion, this paper highlights the potential of deep learning methods in enhancing forest fire detection that is crucial for forest fire management and mitigation.
  15. Zulkifley MA, Mohamed NA, Abdani SR, Kamari NAM, Moubark AM, Ibrahim AA
    Diagnostics (Basel), 2021 Apr 24;11(5).
    PMID: 33923215 DOI: 10.3390/diagnostics11050765
    Skeletal bone age assessment using X-ray images is a standard clinical procedure to detect any anomaly in bone growth among kids and babies. The assessed bone age indicates the actual level of growth, whereby a large discrepancy between the assessed and chronological age might point to a growth disorder. Hence, skeletal bone age assessment is used to screen the possibility of growth abnormalities, genetic problems, and endocrine disorders. Usually, the manual screening is assessed through X-ray images of the non-dominant hand using the Greulich-Pyle (GP) or Tanner-Whitehouse (TW) approach. The GP uses a standard hand atlas, which will be the reference point to predict the bone age of a patient, while the TW uses a scoring mechanism to assess the bone age using several regions of interest information. However, both approaches are heavily dependent on individual domain knowledge and expertise, which is prone to high bias in inter and intra-observer results. Hence, an automated bone age assessment system, which is referred to as Attention-Xception Network (AXNet) is proposed to automatically predict the bone age accurately. The proposed AXNet consists of two parts, which are image normalization and bone age regression modules. The image normalization module will transform each X-ray image into a standardized form so that the regressor network can be trained using better input images. This module will first extract the hand region from the background, which is then rotated to an upright position using the angle calculated from the four key-points of interest. Then, the masked and rotated hand image will be aligned such that it will be positioned in the middle of the image. Both of the masked and rotated images will be obtained through existing state-of-the-art deep learning methods. The last module will then predict the bone age through the Attention-Xception network that incorporates multiple layers of spatial-attention mechanism to emphasize the important features for more accurate bone age prediction. From the experimental results, the proposed AXNet achieves the lowest mean absolute error and mean squared error of 7.699 months and 108.869 months2, respectively. Therefore, the proposed AXNet has demonstrated its potential for practical clinical use with an error of less than one year to assist the experts or radiologists in evaluating the bone age objectively.
  16. Ramli NF, Kamari NAM, Abd Halim S, Zulkifley MA, Sahri MSM, Musirin I
    J Electr Eng Technol, 2022;17(1):85-95.
    PMID: 38624623 DOI: 10.1007/s42835-021-00859-6
    This study presents the efficiency of the wind-driven optimisation (WDO) approach in solving non-convex economic dispatch problems with point-valve effect. The best economic dispatch for a power system is one wherein the system can generate energy at a low cost. The calculation of the generating cost is subject to a number of constraints, such as the power demand for the entire system and the generation limit for each generator unit in the system. In addition, the system should also produce low power loss. The WDO optimisation technique is developed based on the concept of natural wind movement, which serves as a stabiliser to equalise the inequality of air pressure in the atmosphere. One major advantage of WDO over other techniques is its search accuracy. The proposed algorithm has been implemented in two systems, namely, the 10-generator and 40-generator systems. Both systems were tested in a Matlab environment. To highlight the capabilities of WDO, the results using this proposed technique are compared with the results obtained using flower pollination algorithm, moth flame optimisation, particle swarm optimisation and evolutionary programming techniques to determine the efficiency of the proposed approach in solving economic dispatch. The simulation results show the capability of WDO in determining the optimal power generation value with minimum generation cost and low rate of power loss.
  17. Elizar E, Zulkifley MA, Muharar R, Zaman MHM, Mustaza SM
    Sensors (Basel), 2022 Sep 28;22(19).
    PMID: 36236483 DOI: 10.3390/s22197384
    In general, most of the existing convolutional neural network (CNN)-based deep-learning models suffer from spatial-information loss and inadequate feature-representation issues. This is due to their inability to capture multiscale-context information and the exclusion of semantic information throughout the pooling operations. In the early layers of a CNN, the network encodes simple semantic representations, such as edges and corners, while, in the latter part of the CNN, the network encodes more complex semantic features, such as complex geometric shapes. Theoretically, it is better for a CNN to extract features from different levels of semantic representation because tasks such as classification and segmentation work better when both simple and complex feature maps are utilized. Hence, it is also crucial to embed multiscale capability throughout the network so that the various scales of the features can be optimally captured to represent the intended task. Multiscale representation enables the network to fuse low-level and high-level features from a restricted receptive field to enhance the deep-model performance. The main novelty of this review is the comprehensive novel taxonomy of multiscale-deep-learning methods, which includes details of several architectures and their strengths that have been implemented in the existing works. Predominantly, multiscale approaches in deep-learning networks can be classed into two categories: multiscale feature learning and multiscale feature fusion. Multiscale feature learning refers to the method of deriving feature maps by examining kernels over several sizes to collect a larger range of relevant features and predict the input images' spatial mapping. Multiscale feature fusion uses features with different resolutions to find patterns over short and long distances, without a deep network. Additionally, several examples of the techniques are also discussed according to their applications in satellite imagery, medical imaging, agriculture, and industrial and manufacturing systems.
  18. Mohamed Moubark A, Nie L, Mohd Zaman MH, Islam MT, Zulkifley MA, Baharuddin MH, et al.
    Diagnostics (Basel), 2023 Mar 18;13(6).
    PMID: 36980469 DOI: 10.3390/diagnostics13061161
    In ultrasound B-mode imaging, the axial resolution (AR) is commonly determined by the duration or bandwidth of an excitation signal. A shorter-duration pulse will produce better resolution compared to a longer one but with compromised penetration depth. Instead of relying on the pulse duration or bandwidth to improve the AR, an alternative method termed filtered multiply and sum (FMAS) has been introduced in our previous work. For spatial-compounding, FMAS uses the autocorrelation technique as used in filtered-delay multiply and sum (FDMAS), instead of conventional averaging. FMAS enables a higher frame rate and less computational complexity than conventional plane-wave compound imaging beamformed with delay and sum (DAS) and FDMAS. Moreover, it can provide an improved contrast ratio and AR. In previous work, no explanation was given on how FMAS was able to improve the AR. Thus, in this work, we discuss in detail the theory behind the proposed FMAS algorithm and how it is able to improve the spatial resolution mainly in the axial direction. Simulations, experimental phantom measurements and in vivo studies were conducted to benchmark the performance of the proposed method. We also demonstrate how the suggested new algorithm may be used in a practical biomedical imaging application. The balloon snake active contour segmentation technique was applied to the ultrasound B-mode image of a common carotid artery produced with FMAS. The suggested method is capable of reducing the number of iterations for the snake to settle on the region-of-interest contour, accelerating the segmentation process.
  19. Za'im Sahul Hameed M, Nordin R, Ismail A, Zulkifley MA, Sham ASH, Sabudin RZAR, et al.
    Front Public Health, 2023;11:1199234.
    PMID: 38045974 DOI: 10.3389/fpubh.2023.1199234
    INTRODUCTION: Unmanned aerial vehicles (UAVs) are used for commercial, medical, public safety, and scientific research purposes in various countries.

    METHODS: This study aimed to explore the acceptance of medical delivery drones among medical practitioners as well as the public community in Malaysia using a knowledge, attitude, and perception (KAP) model and statistical analysis to decrease uncertainty. Bivariate and multivariate analyses of the results were performed in SPSS.

    RESULTS: A total of 639 respondents took part in the survey, of which 557 complete responses were finally analyzed. The results showed that the overall acceptance rate for medical delivery drones was positive. The acceptance rate was significantly correlated with knowledge, attitude, and perception scores but not with sociodemographic factors.

    DISCUSSION: Raising awareness and educating the medical as well as public communities regarding the potential role and benefits of drones are therefore important in garnering support for drone usage for medical purposes.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links