Displaying all 3 publications

Abstract:
Sort:
  1. Sibuar AA, Zulkafflee NS, Selamat J, Ismail MR, Lee SY, Abdull Razis AF
    PMID: 35055550 DOI: 10.3390/ijerph19020731
    Rice is one of the major crops as well as the staple food in Malaysia. However, historical mining activity has raised a concern regarding heavy metal contamination in paddy plants, especially in Perak, a state with major tin mining during the late nineteenth century. Therefore, the objective of this study is to investigate the heavy metals (As, Cd, Pb, Cu, Cr) contamination in paddy soils and paddy plants in three districts in Perak. The content of heavy metals was determined using ICP-MS, while the absorption and transferability of heavy metals in the paddy plants were investigated through enrichment (EF) and translocation (TF) factors. Principal component analysis (PCA) was employed to recognize the pattern of heavy metal contaminations in different sampling areas. Health risk assessment was performed through calculation of various indices. The quantification results showed that root contained highest concentration of the studied heavy metals, with As exhibiting the highest concentration. The EF results revealed the accumulation of As, Cu, and Cr in the rice grains while PCA showed the different compositional pattern in the different sampling areas. The health risk assessment disclosed both noncarcinogenic and carcinogenic risks in the local adults and children. Overall, findings from this study show that heavy metal contamination poses potential health risks to the residents and control measure is required.
  2. Zulkafflee NS, Mohd Redzuan NA, Hanafi Z, Selamat J, Ismail MR, Praveena SM, et al.
    PMID: 31795132 DOI: 10.3390/ijerph16234769
    Rice ingestion is one of the major pathways for heavy metal bioaccumulation in human. This study aimed to measure the heavy metal content of paddy soils and its bioavailability in paddy grain in order to assess the health risk. In total, 10 rice samples (50 g each) of paddy plants were harvested from the Selangor and Terengganu areas of Malaysia to assess the bioavailability of heavy metal (As, Cd, Cu, Cr, and Pb) using the in vitro digestion model of Rijksinstituut voor Volksgezondheid en Milieu. The bioavailability of heavy metal concentrations in rice samples were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The findings showed the bioavailability of heavy metal concentrations was decreased in the order Cr > Cu > Pb > As > Cd. Chromium was found to be the most abundant bioavailable heavy metal in cooked rice, which was the result of its high content in paddy soil. Hazard Quotient values for the bioavailability of the heavy metal studied were less than one indicating no non-carcinogenic health risks for adults and children. Meanwhile, the total Lifetime Cancer Risk exceeded the acceptable value showing a potential of carcinogenic health risk for both adults and children. The application of in vitro digestion model in assessing bioavailability of heavy metal produces a more realistic estimation of human health risks exposure. However, a regular monitoring of pollution in Selangor and Terengganu areas is crucial since the exposure of heavy metals through rice consumption poses the potential non-carcinogenic and carcinogenic health risk to the local residents.
  3. Zakaria Z, Zulkafflee NS, Mohd Redzuan NA, Selamat J, Ismail MR, Praveena SM, et al.
    Plants (Basel), 2021 May 26;10(6).
    PMID: 34073642 DOI: 10.3390/plants10061070
    Rice is a worldwide staple food and heavy metal contamination is often reported in rice production. Heavy metal can originate from natural sources or be present through anthropogenic contamination. Therefore, this review summarizes the current status of heavy metal contamination in paddy soil and plants, highlighting the mechanism of uptake, bioaccumulation, and health risk assessment. A scoping search employing Google Scholar, Science Direct, Research Gate, Scopus, and Wiley Online was carried out to build up the review using the following keywords: heavy metals, absorption, translocation, accumulation, uptake, biotransformation, rice, and human risk with no restrictions being placed on the year of study. Cadmium (Cd), arsenic (As), and lead (Pb) have been identified as the most prevalent metals in rice cultivation. Mining and irrigation activities are primary sources, but chemical fertilizer and pesticide usage also contribute to heavy metal contamination of paddy soil worldwide. Further to their adverse effect on the paddy ecosystem by reducing the soil fertility and grain yield, heavy metal contamination represents a risk to human health. An in-depth discussion is further offered on health risk assessments by quantitative measurement to identify potential risk towards heavy metal exposure via rice consumption, which consisted of in vitro digestion models through a vital ingestion portion of rice.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links