Displaying all 7 publications

Abstract:
Sort:
  1. Zitar RA, Abualigah L, Al-Dmour NA
    J Ambient Intell Humaniz Comput, 2023;14(7):8375-8385.
    PMID: 34840618 DOI: 10.1007/s12652-021-03602-1
    In this paper, the Red Deer algorithm (RDA), a recent population-based meta-heuristic algorithm, is thoroughly reviewed. The RD algorithm combines the survival of the fittest principle from the evolutionary algorithms and the productivity and richness of heuristic search techniques. Different variants and hybrids of this algorithm are presented and investigated. All the applications that were solved with this algorithm are presented. It is crucial to analyze the performance of this algorithm, therefore, the paper sheds light on the algorithm unique features and weaknesses covering the applications that are primarily suitable for it. The conclusions are presented, and further recommendations are suggested based on the review and analysis covered. The readers of this paper will have an understanding of the RD algorithm and its variants and, consequently, decide how suitable this algorithm is for their own business, research, or industrial applications.
  2. Chakraborty S, Saha AK, Ezugwu AE, Agushaka JO, Zitar RA, Abualigah L
    Arch Comput Methods Eng, 2023;30(2):985-1040.
    PMID: 36373091 DOI: 10.1007/s11831-022-09825-5
    Differential evolution (DE) is one of the highly acknowledged population-based optimization algorithms due to its simplicity, user-friendliness, resilience, and capacity to solve problems. DE has grown steadily since its beginnings due to its ability to solve various issues in academics and industry. Different mutation techniques and parameter choices influence DE's exploration and exploitation capabilities, motivating academics to continue working on DE. This survey aims to depict DE's recent developments concerning parameter adaptations, parameter settings and mutation strategies, hybridizations, and multi-objective variants in the last twelve years. It also summarizes the problems solved in image processing by DE and its variants.
  3. Sharma N, Puri V, Mahajan S, Abualigah L, Zitar RA, Gandomi AH
    Sci Rep, 2023 May 25;13(1):8517.
    PMID: 37231039 DOI: 10.1038/s41598-023-35457-1
    Large-scale solar energy production is still a great deal of obstruction due to the unpredictability of solar power. The intermittent, chaotic, and random quality of solar energy supply has to be dealt with by some comprehensive solar forecasting technologies. Despite forecasting for the long-term, it becomes much more essential to predict short-term forecasts in minutes or even seconds prior. Because key factors such as sudden movement of the clouds, instantaneous deviation of temperature in ambiance, the increased proportion of relative humidity and uncertainty in the wind velocities, haziness, and rains cause the undesired up and down ramping rates, thereby affecting the solar power generation to a greater extent. This paper aims to acknowledge the extended stellar forecasting algorithm using artificial neural network common sensical aspect. Three layered systems have been suggested, consisting of an input layer, hidden layer, and output layer feed-forward in conjunction with back propagation. A prior 5-min te output forecast fed to the input layer to reduce the error has been introduced to have a more precise forecast. Weather remains the most vital input for the ANN type of modeling. The forecasting errors might enhance considerably, thereby affecting the solar power supply relatively due to the variations in the solar irradiations and temperature on any forecasting day. Prior approximation of stellar radiations exhibits a small amount of qualm depending upon climatic conditions such as temperature, shading conditions, soiling effects, relative humidity, etc. All these environmental factors incorporate uncertainty regarding the prediction of the output parameter. In such a case, the approximation of PV output could be much more suitable than direct solar radiation. This paper uses Gradient Descent (GD) and Levenberg Maquarndt Artificial Neural Network (LM-ANN) techniques to apply to data obtained and recorded milliseconds from a 100 W solar panel. The essential purpose of this paper is to establish a time perspective with the greatest deal for the output forecast of small solar power utilities. It has been observed that 5 ms to 12 h time perspective gives the best short- to medium-term prediction for April. A case study has been done in the Peer Panjal region. The data collected for four months with various parameters have been applied randomly as input data using GD and LM type of artificial neural network compared to actual solar energy data. The proposed ANN based algorithm has been used for unswerving petite term forecasting. The model output has been presented in root mean square error and mean absolute percentage error. The results exhibit a improved concurrence between the forecasted and real models. The forecasting of solar energy and load variations assists in fulfilling the cost-effective aspects.
  4. Agushaka JO, Ezugwu AE, Olaide ON, Akinola O, Zitar RA, Abualigah L
    J Bionic Eng, 2023;20(3):1263-1295.
    PMID: 36530517 DOI: 10.1007/s42235-022-00316-8
    This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but effective ways. First, the alpha selection in IDMO differs from the DMO, where evaluating the probability value of each fitness is just a computational overhead and contributes nothing to the quality of the alpha or other group members. The fittest dwarf mongoose is selected as the alpha, and a new operator ω is introduced, which controls the alpha movement, thereby enhancing the exploration ability and exploitability of the IDMO. Second, the scout group movements are modified by randomization to introduce diversity in the search process and explore unvisited areas. Finally, the babysitter's exchange criterium is modified such that once the criterium is met, the babysitters that are exchanged interact with the dwarf mongoose exchanging them to gain information about food sources and sleeping mounds, which could result in better-fitted mongooses instead of initializing them afresh as done in DMO, then the counter is reset to zero. The proposed IDMO was used to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The performance of the IDMO, using different performance metrics and statistical analysis, is compared with the DMO and eight other existing algorithms. In most cases, the results show that solutions achieved by the IDMO are better than those obtained by the existing algorithms.
  5. Daoud MS, Shehab M, Al-Mimi HM, Abualigah L, Zitar RA, Shambour MKY
    Arch Comput Methods Eng, 2023;30(4):2431-2449.
    PMID: 36597494 DOI: 10.1007/s11831-022-09872-y
    This paper introduces a comprehensive survey of a new population-based algorithm so-called gradient-based optimizer (GBO) and analyzes its major features. GBO considers as one of the most effective optimization algorithm where it was utilized in different problems and domains, successfully. This review introduces set of related works of GBO where distributed into; GBO variants, GBO applications, and evaluate the efficiency of GBO compared with other metaheuristic algorithms. Finally, the conclusions concentrate on the existing work on GBO, showing its disadvantages, and propose future works. The review paper will be helpful for the researchers and practitioners of GBO belonging to a wide range of audiences from the domains of optimization, engineering, medical, data mining and clustering. As well, it is wealthy in research on health, environment and public safety. Also, it will aid those who are interested by providing them with potential future research.
  6. Abualigah L, Habash M, Hanandeh ES, Hussein AM, Shinwan MA, Zitar RA, et al.
    J Bionic Eng, 2023 Feb 07.
    PMID: 36777369 DOI: 10.1007/s42235-023-00332-2
    This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding, called RSA-SSA. The proposed method introduces a better search space to find the optimal solution at each iteration. However, we proposed RSA-SSA to avoid the searching problem in the same area and determine the optimal multi-level thresholds. The obtained solutions by the proposed method are represented using the image histogram. The proposed RSA-SSA employed Otsu's variance class function to get the best threshold values at each level. The performance measure for the proposed method is valid by detecting fitness function, structural similarity index, peak signal-to-noise ratio, and Friedman ranking test. Several benchmark images of COVID-19 validate the performance of the proposed RSA-SSA. The results showed that the proposed RSA-SSA outperformed other metaheuristics optimization algorithms published in the literature.
  7. Alyasseri ZAA, Al-Betar MA, Doush IA, Awadallah MA, Abasi AK, Makhadmeh SN, et al.
    Expert Syst, 2021 Jul 28.
    PMID: 34511689 DOI: 10.1111/exsy.12759
    COVID-19 is the disease evoked by a new breed of coronavirus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recently, COVID-19 has become a pandemic by infecting more than 152 million people in over 216 countries and territories. The exponential increase in the number of infections has rendered traditional diagnosis techniques inefficient. Therefore, many researchers have developed several intelligent techniques, such as deep learning (DL) and machine learning (ML), which can assist the healthcare sector in providing quick and precise COVID-19 diagnosis. Therefore, this paper provides a comprehensive review of the most recent DL and ML techniques for COVID-19 diagnosis. The studies are published from December 2019 until April 2021. In general, this paper includes more than 200 studies that have been carefully selected from several publishers, such as IEEE, Springer and Elsevier. We classify the research tracks into two categories: DL and ML and present COVID-19 public datasets established and extracted from different countries. The measures used to evaluate diagnosis methods are comparatively analysed and proper discussion is provided. In conclusion, for COVID-19 diagnosing and outbreak prediction, SVM is the most widely used machine learning mechanism, and CNN is the most widely used deep learning mechanism. Accuracy, sensitivity, and specificity are the most widely used measurements in previous studies. Finally, this review paper will guide the research community on the upcoming development of machine learning for COVID-19 and inspire their works for future development. This review paper will guide the research community on the upcoming development of ML and DL for COVID-19 and inspire their works for future development.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links