Displaying all 4 publications

Abstract:
Sort:
  1. Sarker MM, Zhong M
    Indian J Pharmacol, 2014 Jan-Feb;46(1):40-5.
    PMID: 24550583 DOI: 10.4103/0253-7613.125164
    Keyhole limpet hemocyanin (KLH) is a popular tumor vaccine carrier protein and an immunostimulant. The present study aimed to investigate the immunoregulatory activity of KLH on cytotoxicity, cytokines production, and proliferation of natural killer (NK) cells. Moreover, antiproliferative activity of KLH on Meth A sarcoma cells was studied.
  2. Song P, Cai X, Qin D, Wang Q, Liu X, Zhong M, et al.
    Heliyon, 2024 Jun 15;10(11):e32583.
    PMID: 38961892 DOI: 10.1016/j.heliyon.2024.e32583
    In the evolving landscape of higher education, particularly in the post-pandemic era, it is crucial for college students to face societal challenges and achieve success by understanding and predicting psychological resilience. To deepen our understanding of psychological resilience, this study used a decision tree model to explore influencing factors. We surveyed 776 college students and collected data on demographic information, self-esteem, sense of school belonging, pro-environmental behavior, subjective well-being, internet game addiction, life autonomy, and academic procrastination using several scales. The decision tree model identified eight key predictors of psychological resilience, which are as follows in order of importance: self-esteem, sense of school belonging, pro-environmental behavior, subjective well-being, academic procrastination, life autonomy, internet game addiction, and academic achievement. This model's accuracy reached 73.985 %, emphasizing its potential utility in educational settings. The findings not only provide a novel and data-driven perspective to understand psychological resilience in college students compared to existing research but also provide practical guidance for educational practitioners and policymakers on how to develop psychological resilience in college students.
  3. Zhong M, Huang J, Wu Z, Chan KG, Wang L, Li J, et al.
    Int J Mol Sci, 2022 Nov 18;23(22).
    PMID: 36430760 DOI: 10.3390/ijms232214280
    Periodontal diseases are predisposing factors to the development of many systemic disorders, which is often initiated via leukocyte infiltration and vascular inflammation. These diseases could significantly affect human health and quality of life. Hence, it is vital to explore effective therapies to prevent disease progression. Periodontitis, which is characterized by gingival bleeding, disruption of the gingival capillary's integrity, and irreversible destruction of the periodontal supporting bone, appears to be caused by overexpression of selectins in periodontal tissues. Selectins (P-, L-, and E-selectins) are vital members of adhesion molecules regulating inflammatory and immune responses. They are mainly located in platelets, leukocytes, and endothelial cells. Furthermore, selectins are involved in the immunopathogenesis of vascular inflammatory diseases, such as cardiovascular disease, diabetes, cancers, and so on, by mediating leukocyte recruitment, platelet activation, and alteration of endothelial barrier permeability. Therefore, selectins could be new immunotherapeutic targets for periodontal disorders and their associated systemic diseases since they play a crucial role in immune regulation and endothelium dysfunction. However, the research on selectins and their association with periodontal and systemic diseases remains limited. This review aims to discuss the critical roles of selectins in periodontitis and associated systemic disorders and highlights the potential of selectins as therapeutic targets.
  4. Zhong M, Lin B, Pathak JL, Gao H, Young AJ, Wang X, et al.
    Front Med (Lausanne), 2020;7:580796.
    PMID: 33363183 DOI: 10.3389/fmed.2020.580796
    Background: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that mainly transfers from human to human via respiratory and gastrointestinal routes. The S-glycoprotein in the virus is the key factor for the entry of SARS-CoV-2 into the cell, which contains two functional domains: S1 is an angiotensin-converting enzyme 2 (ACE2) receptor binding domain, and S2 is necessary for fusion of the coronavirus and cell membranes. Moreover, it has been reported that ACE2 is likely to be the receptor for SARS-CoV-2. In addition, mRNA level expression of Furin enzyme and ACE2 receptor had been reported in airway epithelia, cardiac tissue, and enteric canals. However, the expression patterns of ACE2 and Furin in different cell types of oral tissues are still unclear. Methods: In order to investigate the potential infective channel of the new coronavirus via the oropharyngeal cavity, we analyze the expression of ACE2 and Furin in human oral mucosa using the public single-cell sequence datasets. Furthermore, immunohistochemistry was performed in mucosal tissue from different oral anatomical sites to confirm the expression of ACE2 and Furin at the protein level. Results: The bioinformatics results indicated the differential expression of ACE2 and Furin on epithelial cells from different oral anatomical sites. Immunohistochemistry results revealed that both the ACE2-positive and Furin-positive cells in the target tissues were mainly positioned in the epithelial layers, partly expressed in fibroblasts, further confirming the bioinformatics results. Conclusions: Based on these findings, we speculated that SARS-CoV-2 could invade oral mucosal cells through two possible routes: binding to the ACE2 receptor and fusion with cell membrane activated by Furin protease. Our results indicated that oral mucosa tissues are susceptible to SARS-CoV-2 that could facilitate COVID-19 infection via respiratory and fecal-oral routes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links