Displaying all 5 publications

Abstract:
Sort:
  1. Kamarul Zaman, A. A., Shamsudin, R., Mohd Adzahan, N.
    MyJurnal
    Quality and alimental contents of single fruit juice can be ameliorated through mixing or blending process with other fruit juices. Pineapple and mango are the most popular tropical fruits in Malaysia with good characteristic taste. Color properties of pineapple and mango juice blends at ratio of 70P:30M; 50P:50M; 30P:70M was evaluated in term of L*, a*, b* hue, Chroma, color difference (ΔE). Blends ratio 70P:30M juice give the best color performance in terms of hue, chroma and ΔE. Physicochemical properties of juice blends ratio of 70P:30M also give more perishable results of pH (4.32) titratable acidity (0.66% malic acid), total soluble solid (13.67), vitamin C (54.25 mg ascorbic acid/100 ml), and turbidity (438 NTU).
  2. Ullah A, Khan AS, Sarker MR, Iqbal MJ, Khan HU, Tirth V, et al.
    ACS Omega, 2023 Apr 04;8(13):12372-12378.
    PMID: 37033827 DOI: 10.1021/acsomega.3c00128
    The low-temperature sintering of (Bi0.5Na0.5)TiO3-based ceramics can be achieved by sintering aid CuO. Piezoelectric ceramics (1 - x)[0.90(Bi0.5Na0.5)TiO3 - 0.10SrTiO3] - xCuO (BNT-ST-Cu) with x = 0, 0.01, 0.02, 0.03, and 0.04 were prepared through the mixed oxide route. A tetragonal structure was indexed for the undoped sample. Its structure was found to be changed to a pseudocubic when Cu was added. For undoped Cu samples, the sintering temperature (T s) for sufficient densification was 1160 °C. However, T s was reduced to 1090-1120 °C for Cu-added specimens. Field emission scanning electron microscopy (FE-SEM) showed a uniform and dense grain morphology for all samples. The maximum dielectric constant temperature (T m) was decreased with the doping concentration of Cu and applied frequency. The strain was increased with Cu concentration and had the maximum value of 500 pm/V for the sample x = 0.02 with symmetric and slim strain loops.
  3. Khan RU, Khan M, Sohail A, Ullah R, Iqbal A, Ahmad B, et al.
    Trop Biomed, 2022 Dec 01;39(4):511-517.
    PMID: 36602209 DOI: 10.47665/tb.39.4.003
    The present study compares the in vitro effects of nanoparticles loaded pentamidine drug and conventional pentamidine on Leishmania tropica. Herein, pentamidine-loaded chitosan nanoparticles (PTN-CNPs) have been synthesized through an ionic gelation method with sodium tripolyphosphate (TPP). Next, the physical characteristics of PTN-CNPs were determined through the surface texture, zeta potential, in vitro drug release, drug loading content (DLC), and encapsulation efficacy (EE) and compared its efficacy with free pentamidine (PTN) drug against promastigotes and axenic amastigotes forms of L. tropica in vitro. The PTN-CNPs displayed a spherical shape having a size of 88 nm, an almost negative surface charge (-3.09 mV), EE for PTN entrapment of 86%, and in vitro drug release of 92% after 36 h. In vitro antileishmanial activity of PTN-CNPs and free PTN was performed against Leishmania tropica KWH23 promastigote and axenic amastigote using 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyletetrazolium bromide (MTT) assay. It was observed that the effect of PTN-CNPs and free PTN on both forms of the parasite was dose and time dependent. Free PTN presented low efficacy even at higher dose (40 µg/ml) with 25.6 ± 1.3 and 26.5 ±1.4 mean viability rate of the promastigotes and axenic amastigotes, respectively after 72 hrs incubation. While PTN-CNPs showed strong antileishmanial effects on both forms of parasite with 16 ± 0.4 and 19 ± 0.7 mean viability rate at the same higher concentration (40 µg/ml) after 72 hrs incubation. Half maximal inhibitory concentration (IC50) values of PTN-CNPs toward promastigotes and amastigotes were obtained as 0.1375 µg/ml and 0.1910 µg/ml, respectively. In conclusion, PTN-CNPs effectively inhibited both forms of the L. tropica; however, its effect was more salient on promastigotes. This data indicates that the PTN-CNPs act as a target drug delivery system. However, further research is needed to support its efficacy in animal and human CL.
  4. Ullah K, Khan SA, Zaman A, Sarker MR, Ali A, Tirth V, et al.
    ACS Omega, 2023 Aug 22;8(33):29959-29965.
    PMID: 37636967 DOI: 10.1021/acsomega.3c00541
    Nanomaterials (NMs) with structural, optical, and dielectric properties are called functional or smart materials and have favorable applications in various fields of material science and nanotechnology. Pure and Co-doped MgAl2O4 were synthesized by using the sol-gel combustion method. A systematic investigation was carried out to understand the effects of the Co concentration on the crystalline phase, morphology, and optical and dielectric properties of Co-doped MgAl2O4. X-ray diffraction confirmed the cubic spinel structure with the Fd3̅m space group, and there was no impurity phase, while the surface morphology of the samples was investigated by scanning electron microscopy. The dielectric properties of the synthesized material are investigated using an LCR meter with respect to the variation in frequency (1-2 GHz), and their elemental composition has been examined through the energy-dispersive X-ray technique. The existence of the metal-oxygen Mg-Al-O bond has been confirmed by Fourier transform infrared spectroscopy. The value of the dielectric constant decreases with the increasing frequency and Co concentration. The optical behaviors of the Co2+-doped MgAl2O4 reveal that the optical properties were enhanced by increasing the cobalt concentration, which ultimately led to a narrower band gap, which make them exquisite and suitable for energy storage applications, especially for super capacitors. This work aims to focus on the effect of cobalt ions in different concentrations on structural, optical, and dielectric properties.
  5. Windecker S, Latib A, Kedhi E, Kirtane AJ, Kandzari DE, Mehran R, et al.
    N Engl J Med, 2020 03 26;382(13):1208-1218.
    PMID: 32050061 DOI: 10.1056/NEJMoa1910021
    BACKGROUND: Polymer-free drug-coated stents provide superior clinical outcomes to bare-metal stents in patients at high bleeding risk who undergo percutaneous coronary intervention (PCI) and are treated with 1 month of dual antiplatelet therapy. Data on the use of polymer-based drug-eluting stents, as compared with polymer-free drug-coated stents, in such patients are limited.

    METHODS: In an international, randomized, single-blind trial, we compared polymer-based zotarolimus-eluting stents with polymer-free umirolimus-coated stents in patients at high bleeding risk. After PCI, patients were treated with 1 month of dual antiplatelet therapy, followed by single antiplatelet therapy. The primary outcome was a safety composite of death from cardiac causes, myocardial infarction, or stent thrombosis at 1 year. The principal secondary outcome was target-lesion failure, an effectiveness composite of death from cardiac causes, target-vessel myocardial infarction, or clinically indicated target-lesion revascularization. Both outcomes were powered for noninferiority.

    RESULTS: A total of 1996 patients at high bleeding risk were randomly assigned in a 1:1 ratio to receive zotarolimus-eluting stents (1003 patients) or polymer-free drug-coated stents (993 patients). At 1 year, the primary outcome was observed in 169 of 988 patients (17.1%) in the zotarolimus-eluting stent group and in 164 of 969 (16.9%) in the polymer-free drug-coated stent group (risk difference, 0.2 percentage points; upper boundary of the one-sided 97.5% confidence interval [CI], 3.5; noninferiority margin, 4.1; P = 0.01 for noninferiority). The principal secondary outcome was observed in 174 patients (17.6%) in the zotarolimus-eluting stent group and in 169 (17.4%) in the polymer-free drug-coated stent group (risk difference, 0.2 percentage points; upper boundary of the one-sided 97.5% CI, 3.5; noninferiority margin, 4.4; P = 0.007 for noninferiority).

    CONCLUSIONS: Among patients at high bleeding risk who received 1 month of dual antiplatelet therapy after PCI, use of polymer-based zotarolimus-eluting stents was noninferior to use of polymer-free drug-coated stents with regard to safety and effectiveness composite outcomes. (Funded by Medtronic; ONYX ONE ClinicalTrials.gov number, NCT03344653.).

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links