The growing interest in the environmental occurrence of veterinary and human pharmaceuticals is essentially due to their possible health implications to humans and ecosystem. This study assesses the occurrence of human pharmaceuticals in a Malaysian tropical aquatic environment taking a chemometric approach using cluster analysis, discriminant analysis and principal component analysis. Water samples were collected from seven sampling stations along the heavily populated Langat River basin on the west coast of peninsular Malaysia and its main tributaries. Water samples were extracted using solid-phase extraction and analyzed using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for 18 pharmaceuticals and one metabolite, which cover a range of six therapeutic classes widely consumed in Malaysia. Cluster analysis was applied to group both pharmaceutical pollutants and sampling stations. Cluster analysis successfully clustered sampling stations and pollutants into three major clusters. Discriminant analysis was applied to identify those pollutants which had a significant impact in the definition of clusters. Finally, principal component analysis using a three-component model determined the constitution and data variance explained by each of the three main principal components.
This study investigated polycyclic aromatic hydrocarbons (PAHs) pollution in surface sediments within aquaculture areas in Peninsular Malaysia using chemometric techniques, forensics and univariate methods. The samples were analysed using soxhlet extraction, silica gel column clean-up and gas chromatography mass spectrometry. The total PAH concentrations ranged from 20 to 1841 ng/g with a mean of 363 ng/g dw. The application of chemometric techniques enabled clustering and discrimination of the aquaculture sediments into four groups according to the contamination levels. A combination of chemometric and molecular indices was used to identify the sources of PAHs, which could be attributed to vehicle emissions, oil combustion and biomass combustion. Source apportionment using absolute principle component scores-multiple linear regression showed that the main sources of PAHs are vehicle emissions 54%, oil 37% and biomass combustion 9%. Land-based pollution from vehicle emissions is the predominant contributor of PAHs in the aquaculture sediments of Peninsular Malaysia.
Recent techniques in the management of surface river water have been expanding the demand on the method that can provide more representative of multivariate data set. A proper technique of the architecture of artificial neural network (ANN) model and multiple linear regression (MLR) provides an advance tool for surface water modeling and forecasting. The development of receptor model was applied in order to determine the major sources of pollutants at Kuantan River Basin, Malaysia. Thirteen water quality parameters were used in principal component analysis (PCA) and new variables of fertilizer waste, surface runoff, anthropogenic input, chemical and mineral changes and erosion are successfully developed for modeling purposes. Two models were compared in terms of efficiency and goodness-of-fit for water quality index (WQI) prediction. The results show that APCS-ANN model gives better performance with high R2 value (0.9680) and small root mean square error (RMSE) value (2.6409) compared to APCS-MLR model. Meanwhile from the sensitivity analysis, fertilizer waste acts as the dominant pollutant contributor (59.82%) to the basin studied followed by anthropogenic input (22.48%), surface runoff (13.42%), erosion (2.33%) and lastly chemical and mineral changes (1.95%). Thus, this study concluded that receptor modeling of APCS-ANN can be used to solve various constraints in environmental problem that exist between water distribution variables toward appropriate water quality management.
This study aimed to classify the spatiotemporal analysis of rainwater quality before and during the Movement Control Order (MCO) implementation due to the COVID-19 pandemic. Chemometric analysis was carried out on rainwater samples collected from 24-gauge stations throughout Malaysia to determine the samples' chemical content, pH, and conductivity. Other than that, hierarchical agglomerative cluster analysis (HACA) and discriminant analysis (DA) were used to classify the quality of rainwater at each location into four clusters, namely good, satisfactory, moderate, and bad clusters. Note that DA was carried out on the predefined clusters. The reduction in acidity levels occurred in 11 stations (46% of overall stations) after the MCO was implemented. Chemical content and ion abundance followed a downward trend, indicating that Cl- and Na+ were the most dominant among the anions and cations. Apart from that, NH4+, Ca2+, NO3-, and SO42- concentrations were evident in areas with significant anthropogenic activity, as there was a difference in the total chemical content in rainwater when compared before and during the MCO. Based on the dataset before the MCO, 75% of gauge stations were in the good cluster, 8.3% in the satisfactory cluster, 12.5% in the moderate cluster, and 4.2% in the bad cluster. Meanwhile, the dataset during the MCO shows that 72.7% of gauge stations were in the good cluster, 9.1% in the satisfactory cluster, 9.1% in the moderate, and 4.5% in the bad cluster. From this study, the chemometric analysis of the year 2020 rainwater chemical composite dataset strongly indicates that reduction of human activities during MCO affected the quality of rainwater.
The main focus of this study is exploring the spatial distribution of polyaromatics hydrocarbon links between oil spills in the environment via Support Vector Machines based on Kernel-Radial Basis Function (RBF) approach for high precision classification of oil spill type from its sample fingerprinting in Peninsular Malaysia. The results show the highest concentrations of Σ Alkylated PAHs and Σ EPA PAHs in ΣTAH concentration in diesel from the oil samples PP3_liquid and GP6_Jetty achieving 100% classification output, corresponding to coherent decision boundary and projective subspace estimation. The high dimensional nature of this approach has led to the existence of a perfect separability of the oil type classification from four clustered oil type components; i.e diesel, bunker C, Mixture Oil (MO), lube oil and Waste Oil (WO) with the slack variables of ξ ≠ 0. Of the four clusters, only the SVs of two are correctly predicted, namely diesel and MO. The kernel-RBF approach provides efficient and reliable oil sample classification, enabling the oil classification to be optimally performed within a relatively short period of execution and a faster dataset classification where the slack variables ξ are non-zero.
Extended use of GC-FID and GC-MS in oil spill fingerprinting and matching is significantly important for oil classification from the oil spill sources collected from various areas of Peninsular Malaysia and Sabah (East Malaysia). Oil spill fingerprinting from GC-FID and GC-MS coupled with chemometric techniques (discriminant analysis and principal component analysis) is used as a diagnostic tool to classify the types of oil polluting the water. Clustering and discrimination of oil spill compounds in the water from the actual site of oil spill events are divided into four groups viz. diesel, Heavy Fuel Oil (HFO), Mixture Oil containing Light Fuel Oil (MOLFO) and Waste Oil (WO) according to the similarity of their intrinsic chemical properties. Principal component analysis (PCA) demonstrates that diesel, HFO, MOLFO and WO are types of oil or oil products from complex oil mixtures with a total variance of 85.34% and are identified with various anthropogenic activities related to either intentional releasing of oil or accidental discharge of oil into the environment. Our results show that the use of chemometric techniques is significant in providing independent validation for classifying the types of spilled oil in the investigation of oil spill pollution in Malaysia. This, in consequence would result in cost and time saving in identification of the oil spill sources.
This study involves the use of quality engineering in oil spill classification based on oil spill fingerprinting from GC-FID and GC-MS employing the six-sigma approach. The oil spills are recovered from various water areas of Peninsular Malaysia and Sabah (East Malaysia). The study approach used six sigma methodologies that effectively serve as the problem solving in oil classification extracted from the complex mixtures of oil spilled dataset. The analysis of six sigma link with the quality engineering improved the organizational performance to achieve its objectivity of the environmental forensics. The study reveals that oil spills are discriminated into four groups' viz. diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) according to the similarity of the intrinsic chemical properties. Through the validation, it confirmed that four discriminant component, diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) dominate the oil types with a total variance of 99.51% with ANOVA giving Fstat>Fcritical at 95% confidence level and a Chi Square goodness test of 74.87. Results obtained from this study reveals that by employing six-sigma approach in a data-driven problem such as in the case of oil spill classification, good decision making can be expedited.