Displaying all 3 publications

Abstract:
Sort:
  1. Azha MAS, Dannoun EMA, Aziz SB, Kadir MFZ, Zaki ZI, El-Bahy ZM, et al.
    Polymers (Basel), 2021 Oct 19;13(20).
    PMID: 34685361 DOI: 10.3390/polym13203602
    The preparation of a dextran (Dex)-hydroxyethyl cellulose (HEC) blend impregnated with ammonium bromide (NH4Br) is done via the solution cast method. The phases due to crystalline and amorphous regions were separated and used to estimate the degree of crystallinity. The most amorphous blend was discovered to be a blend of 40 wt% Dex and 60 wt% HEC. This polymer blend serves as the channel for ions to be conducted and electrodes separator. The conductivity has been optimized at (1.47 ± 0.12) × 10-4 S cm-1 with 20 wt% NH4Br. The EIS plots were fitted with EEC circuits. The DC conductivity against 1000/T follows the Arrhenius model. The highest conducting electrolyte possesses an ionic number density and mobility of 1.58 × 1021 cm-3 and 6.27 × 10-7 V-1s-1 cm2, respectively. The TNM and LSV investigations were carried out on the highest conducting system. A non-Faradic behavior was predicted from the CV pattern. The fabricated electrical double layer capacitor (EDLC) achieved 8000 cycles, with a specific capacitance, internal resistance, energy density, and power density of 31.7 F g-1, 80 Ω, 3.18 Wh kg-1, and 922.22 W kg-1, respectively.
  2. Jameel MH, Sufi Bin Roslan M, Bin Mayzan MZH, Agam MAB, Zaki ZI, Fallatah AM
    R Soc Open Sci, 2023 Jul;10(7):230503.
    PMID: 37476508 DOI: 10.1098/rsos.230503
    In the present research, the structural, electronic and optical properties of transition metal dichalcogenide-doped transition metal oxides MoS2-doped-V2O5 with various doping concentrations (x = 1-3%) of MoS2 atoms are studied by using first principles calculation. The generalized gradient approximation Perdew-Burke-Ernzerhof simulation approach is used to investigate the energy bandgap (Eg) of orthorhombic structures. We examined the energy bandgap (Eg) decrement from 2.76 to 1.30 eV with various doping (x = 1-3%) of molybdenum disulfide (MoS2) atoms. The bandgap nature shows that the material is a well-known direct bandgap semiconductor. MoS2 doping (x = 1-3%) atoms in pentoxide (V2O5) creates the extra gamma active states which contribute to the formation of conduction and valance bands. MoS2-doped-V2O5 composite is a proficient photocatalyst, has a large surface area for absorption of light, decreases the electron-hole pairs recombination rate and increases the charge transport. A comprehensive study of optical conductivity reveals that strong peaks of MoS2-doped-V2O5 increase in ultraviolet spectrum region with small shifts at larger energy bands through increment doping x = 1-3% atoms of MoS2. A significant decrement was found in the reflectivity due to the decrement in the bandgap with doping. The optical properties significantly increased by the decrement of bandgap (Eg). Two-dimensional MoS2-doped-V2O5 composite has high energy absorption, optical conductivity and refractive index, and is an appropriate material for photocatalytic applications.
  3. Zainuddin NI, Bilad MR, Marbelia L, Budhijanto W, Arahman N, Fahrina A, et al.
    Membranes (Basel), 2021 Nov 15;11(11).
    PMID: 34832104 DOI: 10.3390/membranes11110875
    Tapioca processing industries are very popular in the rural community to produce a variety of foods as the end products. Due to their small scales and scattered locations, they require robust modular systems to operate at low capacity with minimum supervision. This study explores the application of a novel sequencing batch-integrated fixed-film activated sludge membrane (SB-IFASM) process to treat tapioca processing wastewater for reuse purposes. The SB-IFASM employed a gravity-driven system and utilizes biofilm to enhance biodegradation without requiring membrane cleaning. The SB-IFASM utilizes the biofilm as a secondary biodegradation stage to enhance the permeate quality applicable for reuse. A lab-scale SB-IFASM was developed, preliminarily assessed, and used to treat synthetic tapioca processing industry wastewater. The results of short-term filtration tests showed the significant impact of hydrostatic pressure on membrane compaction and instant cake layer formation. Increasing the pressure from 2.2 to 10 kPa lowered the permeability of clean water and activated sludge from 720 to 425 and from 110 to 50 L/m2·h bar, respectively. The unsteady-state operation of the SB-IFASM showed the prominent role of the bio-cake in removing the organics reaching the permeate quality suitable for reuse. High COD removals of 63-98% demonstrated the prominence contribution of the biofilm in enhancing biological performance and ultimate COD removals of >93% make it very attractive for application in small-scale tapioca processing industries. However, the biological ecosystem was unstable, as shown by foaming that deteriorated permeability and was detrimental to the organic removal. Further developments are still required, particularly to address the biological stability and low permeability.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links