Displaying all 15 publications

Abstract:
Sort:
  1. Sahari J, Sapuan SM, Zainudin ES, Maleque MA
    Carbohydr Polym, 2013 Feb 15;92(2):1711-6.
    PMID: 23399210 DOI: 10.1016/j.carbpol.2012.11.031
    In recent years, increasing environmental concerns focused greater attention on the development of biodegradable materials. A thermoplastic starch derived from bioresources, sugar palm tree was successfully developed in the presence of biodegradable glycerol as a plasticizer. Sugar palm starch (SPS) was added with 15-40 w/w% of glycerol to prepare workable bioplastics and coded as SPS/G15, SPS/G20, SPS/G30 and SPS/G40. The samples were characterized for thermal properties, mechanical properties and moisture absorption on exposure to humidity were evaluated. Morphological studies through scanning electron microscopy (SEM) were used to explain the observed mechanical properties. Generally, the addition of glycerol decrease the transition temperature of plasticized SPS. The mechanical properties of plasticized SPS increase with the increasing of glycerol but up to 30 w/w%. Meanwhile, the water absorption of plasticized SPS decrease with increasing of glycerol.
  2. Ibrahim MIJ, Sapuan SM, Zainudin ES, Zuhri MYM
    Int J Biol Macromol, 2019 Oct 15;139:596-604.
    PMID: 31381916 DOI: 10.1016/j.ijbiomac.2019.08.015
    In this study, biodegradable composite films were prepared by using thermoplastic cornstarch matrix and corn husk fiber as a reinforcing filler. The composite films were manufactured via a casting technique using different concentrations of husk fiber (0-8%), and fructose as a plasticizer at a fixed amount of 25% for starch weight. The Physical, thermal, morphological, and tensile characteristics of composite films were investigated. The findings indicated that the incorporation of husk fiber, in general, enhanced the performance of the composite films. There was a noticeable reduction in the density and moisture content of the films, and soil burial assessment showed less resistance to biodegradation. The morphological images presented a consistent structure and excellent compatibility between matrix and reinforcement, which reflected on the improved tensile strength and young modulus as well as the crystallinity index. The thermal stability of composite films has also been enhanced, as evidenced by the increased onset decomposition temperature of the reinforced films compared to neat film. Fourier transform infrared analysis revealed increasing in intermolecular hydrogen bonding following fiber loading. The composite materials prepared using corn husk residues as reinforcement responded to community demand for agricultural and polymeric waste disposal and added more value to waste management.
  3. Ilyas RA, Sapuan SM, Ishak MR, Zainudin ES
    Carbohydr Polym, 2018 Dec 15;202:186-202.
    PMID: 30286991 DOI: 10.1016/j.carbpol.2018.09.002
    Sugar palm fibre (SPF) was treated with NaClO2, bleached with NaOH and subsequently hydrolyzed with acid to obtain sugar palm nanocrystalline cellulose (SPNCCs). Bionanocomposites in the form of films were prepared by mixing sugar palm starch (SPS) and sorbitol/glycerol with different nanofiller SPNCCs compositions (0-1.0 wt%) using solution casting method. The resulting fibres and nanocomposites were characterized in terms of morphology (FESEM and TEM), footprint, crystallinity (XRD), light transmittance, biodegradability, physical, water barrier, thermal (TGA, DSC and DMA) and mechanical properties. The length (L), diameter (D) and L/D values of the SPNCCs were 130 ± 30.23, 8.5 ± 1.82 nm, and 15.3, respectively. The SPS/SPNCCs nanocomposite films exhibited higher crystallinity, tensile strength, Young's modulus, thermal and water-resistance compared to the neat SPS film. The results showed that the tensile strength and moduli of the bionanocomposites increased after being reinforced with SPNCCs and the optimum nanofiller content was 0.5%.
  4. Ilyas RA, Sapuan SM, Ishak MR, Zainudin ES
    Int J Biol Macromol, 2019 Feb 15;123:379-388.
    PMID: 30447353 DOI: 10.1016/j.ijbiomac.2018.11.124
    Nanofibrillated cellulose (NFCs) were extracted from sugar palm fibres (SPS) in two separate stages; delignification and mercerization to remove lignin and hemicellulose, respectively. Subsequently, the obtained cellulose fibres were then mechanically extracted into nanofibres using high pressurized homogenization (HPH). The diameter distribution sizes of the isolated nanofibres were dependent on the cycle number of HPH treatment. TEM micro-images displayed the decreasing trend of NFCs diameter, from 21.37 to 5.5 nm when the number of cycle HPH was increased from 5 to 15 cycles, meanwhile TGA and XRD analysis showed that the degradation temperature and crystallinity of the NFCs were slightly increased from 347 to 347.3 °C and 75.38 to 81.19% respectively, when the number of cycles increased. Others analysis also were carried on such as FT-IR, FESEM, AFM, physical properties, zeta potential and yield analysis. The isolated NFCs may be potentially applied in various application, such as tissue engineering scaffolds, bio-nanocomposites, filtration media, bio-packaging and etc.
  5. Sherwani SFK, Zainudin ES, Sapuan SM, Leman Z, Khalina A
    Polymers (Basel), 2021 Oct 20;13(21).
    PMID: 34771176 DOI: 10.3390/polym13213620
    This research was performed to evaluate the physical, mechanical, and morphological properties of treated sugar palm fiber (SPF)/glass fiber (GF) reinforced poly(lactic acid) (PLA) hybrid composites. Morphological investigations of tensile and flexural fractured samples of composites were conducted with the help of scanning electron microscopy (SEM). Alkaline and benzoyl chloride (BC) treatments of SPFs were performed. A constant weight fraction of 30% total fiber loading and 70% poly(lactic acid) were considered. The composites were initially prepared by a Brabender Plastograph, followed by a hot-pressing machine. The results reported that the best tensile and flexural strengths of 26.3 MPa and 27.3 MPa were recorded after alkaline treatment of SPF, while the highest values of tensile and flexural moduli of 607 MPa and 1847 MPa were recorded after BC treatment of SPF for SPF/GF/PLA hybrid composites. The novel SPF/GF/PLA hybrid composites could be suitable for fabricating automotive components.
  6. Alaaeddin MH, Sapuan SM, Zuhri MYM, Zainudin ES, M Al-Oqla F
    Materials (Basel), 2019 Sep 17;12(18).
    PMID: 31533207 DOI: 10.3390/ma12183007
    Photovoltaic backsheets have considerable impact on the collective performance of solar cells. Material components should withstand certain temperatures and loads while maintaining high thermal stability under various weather conditions. Solar modules must demonstrate increased reliability, adequate performance, safety, and durability throughout the course of their lifetime. This work presents a novel solar module. The module consists of an innovative polyvinylidene fluoride-short sugar palm fiber (PVDF-SSPF) composite backsheet within its structure. It was electrically and thermally evaluated. The current-voltage characteristics (I-V) were obtained using the solar module analyzer, PROVA 210PV. A thermal evaluation was accomplished using a temperature device, SDL200. The thermal test consisted of two different assessments. The first targeted the surface and backsheet of the developed module to correlate their performance from within. The second assessment compared the thermal performance of the fabricated backsheet with the conventional one. Both tests were combined into a heatmap analysis to further understand the thermal performance. Results revealed that the developed module exhibited reasonable electrical efficiency, achieving appropriate and balanced I-V curves. PVDF-SSPF backsheets proved to be thermally stable by displaying less heat absorbance and better temperature shifts. Additional research efforts are highly encouraged to investigate other characteristics. To enhance performance, further analyses are needed such as the damp heat analysis, accelerated aging analysis, and heat dissipation phenomena.
  7. Hazrol MD, Sapuan SM, Zainudin ES, Zuhri MYM, Abdul Wahab NI
    Polymers (Basel), 2021 Jan 12;13(2).
    PMID: 33445740 DOI: 10.3390/polym13020242
    The research included corn starch (CS) films using sorbitol (S), glycerol (G), and their combination (SG) as plasticizers at 30, 45, and 60 wt %, with a traditional solution casting technique. The introduction of plasticizer to CS film-forming solutions led to solving the fragility and brittleness of CS films. The increased concentration of plasticizers contributed to an improvement in film thickness, weight, and humidity. Conversely, plasticized films reduced their density and water absorption, with increasing plasticizer concentrations. The increase in the amount of the plasticizer from 30 to 60% showed a lower impact on the moisture content and water absorption of S-plasticized films. The S30-plasticized films also showed outstanding mechanical properties with 13.62 MPa and 495.97 MPa, for tensile stress and tensile modulus, respectively. Glycerol and-sorbitol/glycerol plasticizer (G and SG) films showed higher moisture content and water absorption relative to S-plasticized films. This study has shown that the amount and type of plasticizers significantly affect the appearances, physical, morphological, and mechanical properties of the corn starch biopolymer plastic.
  8. Alaaeddin MH, Sapuan SM, Zuhri MYM, Zainudin ES, M Al-Oqla F
    Materials (Basel), 2019 Jun 29;12(13).
    PMID: 31261926 DOI: 10.3390/ma12132104
    Photovoltaic module backsheets are characterized according to their thermal, optical, mechanical, and technical properties. This work introduces new fabricated backsheets for PV modules using polyvinylidene fluoride (PVDF) reinforced with short sugar palm fiber (SSPF) composites. The preparation of composites undergoes multiple phases of fabrication. Thermal, optical, and technical investigations of their properties were conducted. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, in-situ scanning probe microscopy (SPM), dynamic mechanical analysis (DMA), thermal mechanical analysis (TMA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and prolonged technical testing were accomplished to expansively understand the complex behavior of composites under various conditions. The optical properties of PV backsheets are critical components in determining the reflectance, absorbance, and transmittance of light. The PVDF-SSPF composites exhibited exceptional compatibility and thermal stability, further revealing a homogenous composite structure with enhanced interfacial bonding between the short fiber and polymer matrix.
  9. Hazrol MD, Sapuan SM, Ilyas RA, Zainudin ES, Zuhri MYM, Abdul NI
    Heliyon, 2023 Apr;9(4):e15153.
    PMID: 37095902 DOI: 10.1016/j.heliyon.2023.e15153
    This paper documents the thermal and biodegradation behaviour of kenaf/cornhusk fiber reinforced corn starch-based hybrid composites film (CS/K-CH) produced by solution casting method. To develop both components as biodegradable hybrid composite, this research used corn starch as matrix, kenaf fiber and cornhusk fibre as a filler. Changes in physical structure and weight from the soil burial test were measured using Mettler Toledo digital balance ME. Films produced from physically blended corn starch reinforced kenaf biocomposites films (CS/K) biocomposite film had faster biodegradation and lost 96.18% of weight within 10 days compared with corn starch hybrid composites that only lost 83.82% of total weight. It was observed that the control film, CS/K biocomposite film was completely degraded after 10 days, meanwhile it took 12 days for hybrid composite films to be fully degrade. The thermal properties such as TGA and DTG were also measured. Addition of corn husk fiber significantly improve the film's thermal properties. Glass transition temperatures of corn starch hybrid films were significantly lowered when cornhusk compositions were increased from 0.2% wt to 0.8% wt. Importantly, the current work has demonstrated that hybrid films made of corn starch can be a suitable biodegradable material for substitute synthetic plastic.
  10. Azlin MNM, Sapuan SM, Zuhri MYM, Zainudin ES, Ilyas RA
    Polymers (Basel), 2022 Jun 30;14(13).
    PMID: 35808734 DOI: 10.3390/polym14132690
    This paper presents the thermal and flammability properties of woven kenaf/polyester-reinforced polylactic acid hybrid laminated composites. The effects of the fiber content and stacking sequences of hybrid composites were examined. The hybrid composites were fabricated using the hot press method. Thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and flammability properties of woven kenaf/polyester-reinforced polylactic hybrid composites were reported. The thermal results have demonstrated the effect of the hybridization of the composites on the thermal stability and viscoelastic properties of the laminates. The work also measured the burning rate of the hybrid composites during the flammability test. The S7 sample that consisted of all woven kenaf layers in composite recorded the highest char residue of 10%, and the S8 sample displayed the highest decomposition temperature among all samples. However, as for hybrid composites, the S5 sample shows the optimum result with a high char yield and exhibited the lowest burning rate at 29 mm/min. The S5 sample also shows the optimum viscoelastic properties such as storage and loss modulus among hybrid composites.
  11. Khan A, Sapuan SM, Siddiqui VU, Zainudin ES, Zuhri MYM, Harussani MM
    Int J Biol Macromol, 2023 Dec 31;253(Pt 5):127119.
    PMID: 37776930 DOI: 10.1016/j.ijbiomac.2023.127119
    Kenaf fiber has recently garnered exponential interest as reinforcement in composite materials across diverse industries owing to its superior mechanical attributes, ease of manufacture, and inherent biodegradability. In the discourse of this review, various methods of manufacturing kenaf/Polylactic acid (PLA) composites have been discussed meticulously, as delineated in recently published scientific literatures. This paper delves into the chemical modification of kenaf fiber, examining its consequential impact on tensile strength and thermal stability of the kenaf/PLA composites. Further, this review illuminates the role of innovative 3D printing techniques and fiber orientation in augmenting the mechanical robustness of the kenaf/PLA composites. Simultaneously, recent insightful explorations into the acoustic properties of the kenaf/PLA composites, underscoring their potential as sustainable alternative to conventional materials have been reviewed. Serving as a comprehensive repository of knowledge, this review paper holds immense value for researchers aiming to utilize the capabilities of kenaf fiber reinforced PLA composites.
  12. Azka MA, Sapuan SM, Abral H, Zainudin ES, Aziz FA
    Int J Biol Macromol, 2024 Apr 25;268(Pt 1):131845.
    PMID: 38677695 DOI: 10.1016/j.ijbiomac.2024.131845
    Researchers have begun focusing on developing biodegradable materials, such as natural fiber/polymer composites (NFPC), since the growing of environmental concerns related to waste management. One crucial aspect that must be established in the development of these composites is their water-absorption behavior. This paper examines the water absorption (WA) behavior of NFPC, with a specific emphasis on natural fiber/polylactic acid (PLA) composites. It discusses processes and numerous aspects related to this behavior, based on recent published research. This review analyzes the influence of several factors, such as the loading of natural fiber, the combination of different natural fibers, the methods used in manufacturing, and the temperature of the water, on the WA behavior of natural fiber/PLA composites. It also explores how WA affects the properties of these composites. In addition, this review also presented techniques for improving the WA resistance of the composites. This review paper provides researchers with insights into the WA behavior of the composites, aiming to facilitate the development of a versatile and eco-friendly material that may effectively address waste disposal challenges.
  13. Nurazzi NM, Sabaruddin FA, Harussani MM, Kamarudin SH, Rayung M, Asyraf MRM, et al.
    Nanomaterials (Basel), 2021 Aug 26;11(9).
    PMID: 34578502 DOI: 10.3390/nano11092186
    Developments in the synthesis and scalable manufacturing of carbon nanomaterials like carbon nanotubes (CNTs) have been widely used in the polymer material industry over the last few decades, resulting in a series of fascinating multifunctional composites used in fields ranging from portable electronic devices, entertainment and sports to the military, aerospace, and automotive sectors. CNTs offer good thermal and electrical properties, as well as a low density and a high Young's modulus, making them suitable nanofillers for polymer composites. As mechanical reinforcements for structural applications CNTs are unique due to their nano-dimensions and size, as well as their incredible strength. Although a large number of studies have been conducted on these novel materials, there have only been a few reviews published on their mechanical performance in polymer composites. As a result, in this review we have covered some of the key application factors as well as the mechanical properties of CNTs-reinforced polymer composites. Finally, the potential uses of CNTs hybridised with polymer composites reinforced with natural fibres such as kenaf fibre, oil palm empty fruit bunch (OPEFB) fibre, bamboo fibre, and sugar palm fibre have been highlighted.
  14. Nurazzi NM, Asyraf MRM, Rayung M, Norrrahim MNF, Shazleen SS, Rani MSA, et al.
    Polymers (Basel), 2021 Aug 13;13(16).
    PMID: 34451248 DOI: 10.3390/polym13162710
    Natural fiber such as bamboo fiber, oil palm empty fruit bunch (OPEFB) fiber, kenaf fiber, and sugar palm fiber-reinforced polymer composites are being increasingly developed for lightweight structures with high specific strength in the automotive, marine, aerospace, and construction industries with significant economic benefits, sustainability, and environmental benefits. The plant-based natural fibers are hydrophilic, which is incompatible with hydrophobic polymer matrices. This leads to a reduction of their interfacial bonding and to the poor thermal stability performance of the resulting fiber-reinforced polymer composite. Based on the literature, the effect of chemical treatment of natural fiber-reinforced polymer composites had significantly influenced the thermogravimetric analysis (TGA) together with the thermal stability performance of the composite structure. In this review, the effect of chemical treatments used on cellulose natural fiber-reinforced thermoplastic and thermosetting polymer composites has been reviewed. From the present review, the TGA data are useful as guidance in determining the purity and composition of the composites' structures, drying, and the ignition temperatures of materials. Knowing the stability temperatures of compounds based on their weight, changes in the temperature dependence is another factor to consider regarding the effectiveness of chemical treatments for the purpose of synergizing the chemical bonding between the natural fiber with polymer matrix or with the synthetic fibers.
  15. Nurazzi NM, Asyraf MRM, Athiyah SF, Shazleen SS, Rafiqah SA, Harussani MM, et al.
    Polymers (Basel), 2021 Jun 30;13(13).
    PMID: 34209030 DOI: 10.3390/polym13132170
    In the field of hybrid natural fiber polymer composites, there has been a recent surge in research and innovation for structural applications. To expand the strengths and applications of this category of materials, significant effort was put into improving their mechanical properties. Hybridization is a designed technique for fiber-reinforced composite materials that involves combining two or more fibers of different groups within a single matrix to manipulate the desired properties. They may be made from a mix of natural and synthetic fibers, synthetic and synthetic fibers, or natural fiber and carbonaceous materials. Owing to their diverse properties, hybrid natural fiber composite materials are manufactured from a variety of materials, including rubber, elastomer, metal, ceramics, glasses, and plants, which come in composite, sandwich laminate, lattice, and segmented shapes. Hybrid composites have a wide range of uses, including in aerospace interiors, naval, civil building, industrial, and sporting goods. This study intends to provide a summary of the factors that contribute to natural fiber-reinforced polymer composites' mechanical and structural failure as well as overview the details and developments that have been achieved with the composites.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links