Displaying all 4 publications

Abstract:
Sort:
  1. Zaharudin N, Staerk D, Dragsted LO
    Food Chem, 2019 Jan 01;270:481-486.
    PMID: 30174076 DOI: 10.1016/j.foodchem.2018.07.142
    A 5 mg/mL solution of water, methanol and acetone extracts of seaweeds were used for α-glucosidase inhibition assay hyphenated with high performance liquid chromatography-mass spectrometry (HPLC-HRMS). The results showed acetone extracts of Undaria pinnatifida has the strongest inhibitory effect against α-glucosidase activity with IC50 0.08 ± 0.002 mg/mL. The active compound found in Undaria pinnatifida was identified as fucoxanthin. Analytical standard sample of fucoxanthin significantly inhibited α-glucosidase with IC50 value 0.047 ± 0.001 mg/mL. An inhibition kinetics study indicates that fucoxanthin is showing mixed-type inhibition. These results suggest that Undaria pinnatifida has a potential to inhibit α-glucosidase and may be used as a bioactive food ingredient for glycaemic control.
  2. Zaharudin N, Salmeán AA, Dragsted LO
    Food Chem, 2018 Apr 15;245:1196-1203.
    PMID: 29287342 DOI: 10.1016/j.foodchem.2017.11.027
    Edible seaweeds are valuable because of their organoleptic properties and complex polysaccharide content. A study was conducted to investigate the potential of dried edible seaweed extracts, its potential phenolic compounds and alginates for α-amylase inhibitory effects. The kinetics of inhibition was assessed in comparison with acarbose. The methanol extract of Laminaria digitata and the acetone extract of Undaria pinnatifida showed inhibitory activity against α-amylase, IC50 0.74 ± 0.02 mg/ml and 0.81 ± 0.03 mg/ml, respectively; both showed mixed-type inhibition. Phenolic compound, 2,5-dihydroxybenzoic acid was found to be a potent inhibitor of α-amylase with an IC50 value of 0.046 ± 0.004 mg/ml. Alginates found in brown seaweeds appeared to be potent inhibitors of α-amylase activity with an IC50 of (0.075 ± 0.010-0.103 ± 0.017) mg/ml, also a mixed-type inhibition. Overall, the findings provide information that crude extracts of brown edible seaweeds, phenolic compounds and alginates are potent α-amylase inhibitors, thereby potentially retarding glucose liberation from starches and alleviation of postprandial hyperglycaemia.
  3. Hisam Zamakshshari N, Adewale Ahmed I, Nazil Afiq Nasharuddin M, Syahira Zaharudin N, Mohd Hashim N, Othman R
    Chem Biodivers, 2023 Jun;20(6):e202300111.
    PMID: 37236908 DOI: 10.1002/cbdv.202300111
    The relevance of the lignocellulosic substrate in the cultivation of mushrooms has lent support to the exploration of several lignocellulosic agro wastes. This study was, thus, aimed at the evaluation of durian peel as an alternative substrate for more sustainable mushroom cultivation and climate change mitigation. The secondary metabolites and biological activities of both aqueous and organic mushroom (Pleurotus pulmonarius (Fr.) Quel.) extract cultured on durian peel and rubberwood sawdust substrate were compared using GCMS, LCMS as well as various biological assays (cytotoxicity, antimicrobial and antioxidant activities). Mushroom extracts from durian peel substrates possess remarkable biological activities. The results showed that the aqueous extracts had poor antimicrobial activities. The organic extracts were more active against cancer cells than the aqueous extracts, while the aqueous extracts were more potent as antioxidants than the organic extracts. Overall, the mushroom extract from the durian substrate was the most effective except against A549 and SW948, while the aqueous extract from the durian substrate was the most effective against the A549 cancer cell lines with 29.53±2.39 % inhibition. On the other hand, the organic mushroom extract from the sawdust substrate was the most effective against SW948 with 60.24±2.45 % inhibition. Further studies, however, are needed to elucidate the molecular mechanism of action of P. pulmonarius extracts against cancer cell proliferation and the effect of the substrates on the nutritional composition, secondary metabolites, and other biological activities of P. pulmonarius extracts.
  4. Zaharudin N, Tullin M, Pekmez CT, Sloth JJ, Rasmussen RR, Dragsted LO
    Clin Nutr, 2021 Mar;40(3):830-838.
    PMID: 32917417 DOI: 10.1016/j.clnu.2020.08.027
    BACKGROUND & AIMS: Seaweed including brown seaweeds with rich bioactive components may be efficacious for a glycaemic management strategy and appetite control. We investigated the effects of two brown edible seaweeds, Laminaria digitata (LD) and Undaria pinnatifida (UP), on postprandial glucose metabolism and appetite following a starch load in a human meal study.

    METHODS: Twenty healthy subjects were enrolled in a randomized, 3-way, blinded cross-over trial. The study was registered under ClinicalTrials.gov Identifier no. NCT00123456. At each test day, the subjects received one of three meals comprising 30 g of starch with 5 g of LD or UP or an energy-adjusted control meal containing pea protein. Fasting and postprandial blood glucose, insulin, C-peptide and glucagon-like peptide-1 (GLP-1) concentrations were measured. Subjective appetite sensations were scored using visual analogue scales (VAS).

    RESULTS: Linear mixed model (LMM) analysis showed a lower blood glucose, insulin and C-peptide response following the intake of LD and UP, after correction for body weight. Participants weighing ≤ 63 kg had a reduced glucose response compared to control meal between 40 and 90 min both following LD and UP meals. Furthermore, LMM analysis for C-peptide showed a significantly lower response after intake of LD. Compared to the control meal, GLP-1 response was higher after the LD meal, both before and after the body weight adjustment. The VAS scores showed a decreased appetite sensation after intake of the seaweeds. Ad-libitum food intake was not different three hours after the seaweed meals compared to control.

    CONCLUSIONS: Concomitant ingestion of brown seaweeds may help improving postprandial glycaemic and appetite control in healthy and normal weight adults, depending on the dose per body weight.

    CLINICAL TRIAL REGISTRY NUMBER: Clinicaltrials.gov (ID# NCT02608372).

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links