MATERIALS AND METHODS: The clinic-based prospective evaluation included all suspected measles cases captured by routine measles surveillance at 34 purposely selected clinics in 15 health districts in Malaysia between September 2019 and June 2020, following day-long regional trainings on RDT use. Following informed consent, four specimens were collected from each suspected case, including those routinely collected for standard surveillance [serum for EIA and throat swabs for quantitative reverse transcriptase polymerase chain reaction (RT-qPCR)] together with capillary blood and oral fluid tested with RDTs during the study. RDT impact was evaluated by comparing the rapidity of measles public health response between the pre-RDT implementation (December 2018 to August 2019) and RDT implementation periods (September 2019 to June 2020). To assess knowledge, attitudes, and practices of RDT use, staff involved in the public health management of measles at the selected sites were surveyed.
RESULTS: Among the 436 suspect cases, agreement of direct visual readings of measles RDT devices between two health clinic staff was 99% for capillary blood (k = 0.94) and 97% for oral fluid (k = 0.90) specimens. Of the total, 45 (10%) were positive by measles IgM EIA (n = 44, including five also positive by RT-qPCR) or RT-qPCR only (n = 1), and 38 were positive by RDT (using either capillary blood or oral fluid). Using measles IgM EIA or RT-qPCR as reference, RDT sensitivity using capillary blood was 43% (95% CI: 30%-58%) and specificity was 98% (95% CI: 96%-99%); using oral fluid, sensitivity (26%, 95% CI: 15%-40%) and specificity (97%, 95% CI: 94%-98%) were lower. Nine months after training, RDT knowledge was high among staff involved with the public health management of measles (average quiz score of 80%) and was highest among those who received formal training (88%), followed by those trained during supervisory visits (83%). During the RDT implementation period, the number of days from case confirmation until initiation of public response decreased by about 5 days.
CONCLUSION: The measles IgM RDT shows >95% inter-reader agreement, high retention of RDT knowledge, and a more rapid public health response. However, despite ≥95% RDT specificity using capillary blood or oral fluid, RDT sensitivity was <45%. Higher-powered studies using highly specific IgM assays and systematic RT-qPCR for case confirmation are needed to establish the role of RDT in measles elimination settings.
METHODS: We conducted a meta-analysis of four NPC GWAS among Chinese individuals (2,152 cases; 3,740 controls). Forty-three noteworthy findings outside the MHC region were identified and targeted for replication in a pooled analysis of four independent case-control studies across three regions in Asia (4,716 cases; 5,379 controls). A meta-analysis that combined results from the initial GWA and replication studies was performed.
RESULTS: In the combined meta-analysis, rs31489, located within the CLPTM1L/TERT region on chromosome 5p15.33, was strongly associated with NPC (OR = 0.81; P value 6.3 × 10(-13)). Our results also provide support for associations reported from published NPC GWAS-rs6774494 (P = 1.5 × 10(-12); located in the MECOM gene region), rs9510787 (P = 5.0 × 10(-10); located in the TNFRSF19 gene region), and rs1412829/rs4977756/rs1063192 (P = 2.8 × 10(-8), P = 7.0 × 10(-7), and P = 8.4 × 10(-7), respectively; located in the CDKN2A/B gene region).
CONCLUSIONS: We have identified a novel association between genetic variation in the CLPTM1L/TERT region and NPC. Supporting our finding, rs31489 and other SNPs in this region have been reported to be associated with multiple cancer sites, candidate-based studies have reported associations between polymorphisms in this region and NPC, the TERT gene has been shown to be important for telomere maintenance and has been reported to be overexpressed in NPC, and an EBV protein expressed in NPC (LMP1) has been reported to modulate TERT expression/telomerase activity.
IMPACT: Our finding suggests that factors involved in telomere length maintenance are involved in NPC pathogenesis.
METHODS: We utilized data from genome-wide association studies within the Pancreatic Cancer Cohort Consortium and Pancreatic Cancer Case-Control Consortium, involving approximately 9,269 cases and 12,530 controls of European descent, to evaluate associations between pancreatic cancer risk and genetically predicted plasma n-6 PUFA levels. Conventional MR analyses were performed using individual-level and summary-level data.
RESULTS: Using genetic instruments, we did not find evidence of associations between genetically predicted plasma n-6 PUFA levels and pancreatic cancer risk [estimates per one SD increase in each PUFA-specific weighted genetic score using summary statistics: linoleic acid odds ratio (OR) = 1.00, 95% confidence interval (CI) = 0.98-1.02; arachidonic acid OR = 1.00, 95% CI = 0.99-1.01; and dihomo-gamma-linolenic acid OR = 0.95, 95% CI = 0.87-1.02]. The OR estimates remained virtually unchanged after adjustment for covariates, using individual-level data or summary statistics, or stratification by age and sex.
CONCLUSIONS: Our results suggest that variations of genetically determined plasma n-6 PUFA levels are not associated with pancreatic cancer risk.
IMPACT: These results suggest that modifying n-6 PUFA levels through food sources or supplementation may not influence risk of pancreatic cancer.
METHODS: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided.
RESULTS: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets.
CONCLUSION: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.
METHODS: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples).
RESULTS: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction.
CONCLUSIONS: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.