METHOD: A randomized controlled open-label study was performed at the cardiothoracic intensive care unit of Penang Hospital, Malaysia. A total of 28 patients who underwent cardiac surgeries were randomly assigned to receive either dexmedetomidine or morphine. Both groups were similar in terms of preoperative baseline characteristics. Efficacy measures included sedation scores and pain intensity and requirements for additional sedative/analgesic. Mean heart rate and arterial blood pressure were used as safety measures. Other measures were additional inotropes, extubation time and other concurrent medications.
RESULTS: The mean dose of dexmedetomidine infused was 0.12 [SD 0.03] μg kg⁻¹ h⁻¹, while that of morphine was 13.2 [SD 5.84] μg kg⁻¹ h⁻¹. Dexmedetomidine group showed more benefits in sedation and pain levels, additional sedative/analgesic requirements, and extubation time. No significant differences between the two groups for the outcome measures, except heart rate, which was significantly lower in the dexmedetomidine group.
CONCLUSION: This preliminary study suggests that dexmedetomidine was at least comparable to morphine in terms of efficacy and safety among cardiac surgery patients. Further studies with larger samples are recommended in order to determine the significant effects of the outcome measures.
METHODS AND RESULTS: In this study, recombinant TYMVcHis6 expressed in Escherichia coli self-assembled into VLPs of approximately 30-32 nm. SDS-PAGE and Western blot analysis of protein fractions from the immobilized metal affinity chromatography (IMAC) showed that TYMVcHis6 VLPs interacted strongly with nickel ligands in IMAC column, suggesting that the fusion peptide is protruding out from the surface of VLPs. These VLPs are highly stable over a wide pH range from 3·0 to 11·0 at different temperatures. At pH 11·0, specifically, the VLPs remained intact up to 75°C. Additionally, the disassembly and reassembly of TYMVcHis6 VLPs were studied in vitro. Dynamic light scattering and transmission electron microscopy analysis revealed that TYMVcHis6 VLPs were dissociated by 7 mol l-1 urea and 2 mol l-1 guanidine hydrochloride (GdnHCl) without impairing their reassembly property.
CONCLUSIONS: A 10-residue peptide was successfully displayed on the surface of TYMVcHis6 VLPs. This chimera demonstrated high stability under extreme thermal conditions with varying pH and was able to dissociate and reassociate into VLPs by chemical denaturants.
SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first C-terminally modified TYMVc produced in E. coli. The C-terminal tail which is exposed on the surface can be exploited as a useful site to display multiple copies of functional ligands. The ability of the chimeric VLPs to self-assemble after undergo chemical denaturation indicates its potential role to serve as a nanocarrier for use in targeted drug delivery.