Displaying all 4 publications

Abstract:
Sort:
  1. Kim HJ, Lee SH, Chang BS, Lee CK, Lim TO, Hoo LP, et al.
    Spine (Phila Pa 1976), 2015 Jan 15;40(2):87-94.
    PMID: 25575085 DOI: 10.1097/BRS.0000000000000680
    Prospective randomized controlled trial.
  2. Lee CK, Li QY, Park J, Park SM, Kim HJ, Chang BS, et al.
    Asian Spine J, 2023 Aug;17(4):639-646.
    PMID: 37127909 DOI: 10.31616/asj.2022.0388
    STUDY DESIGN: Examination using three-dimensional screw trajectory software and computed tomographic scans.

    PURPOSE: To evaluate the feasibility of a novel trajectory for C7 laminar screws and to compare it with an old trajectory.

    OVERVIEW OF LITERATURE: The previously reported trajectory of C7 laminar screws has a horizontal direction without a fixed target point. Our new trajectory has a cephalad direction with a fixed target point.

    METHODS: Computed tomographic scans of a total of 50 male and 50 female patients were utilized. The placement of C7 laminar screws was activated employing the new and old trajectories. The success rate, the causes of failure, and the maximum allowable length of each trajectory were compared.

    RESULTS: Employing the new trajectory, the success rates of the unilaminar and bilaminar screws were 93% and 83%, respectively, which were significantly better than the old trajectory (80%, p<0.0001 and 70%, p=0.0003). The most prevalent cause of failure was laminar cortical breach followed by facet joint violation. The new trajectory also offered significantly longer maximum allowable screw length in unilaminar (32.5±4.3 mm vs. 26.5±2.6 mm, p<0.001), bilaminar cephalic (29.5±3.8 mm vs. 25.9±2.6 mm, p<0.0001) and bilaminar caudal (33.1±2.6 mm vs. 25.8±3.1 mm, p<0.001) screws than the old trajectory. With the new and old trajectories, 70% vs. 6% of unilaminar, 60% vs. 2% of bilaminar caudal, and 32% vs. 4% of bilaminar cephalic screws could be protracted perfectly into the corresponding lateral mass without any laminar cortical or facet joint violation (p<0.0001).

    CONCLUSIONS: The novel trajectory possesses a substantially higher success rate, longer maximum allowable screw length, and higher chance to be extended into the lateral mass (a condition known as a lamino-lateral mass screw) than the old trajectory.

  3. Park JH, Kim MH, Sutanto E, Na SW, Kim MJ, Yeom JS, et al.
    PLoS Negl Trop Dis, 2022 Jun;16(6):e0010492.
    PMID: 35737709 DOI: 10.1371/journal.pntd.0010492
    Plasmodium vivax is the most widespread cause of human malaria. Recent reports of drug resistant vivax malaria and the challenge of eradicating the dormant liver forms increase the importance of vaccine development against this relapsing disease. P. vivax reticulocyte binding protein 1a (PvRBP1a) is a potential vaccine candidate, which is involved in red cell tropism, a crucial step in the merozoite invasion of host reticulocytes. As part of the initial evaluation of the PvRBP1a vaccine candidate, we investigated its genetic diversity and antigenicity using geographically diverse clinical isolates. We analysed pvrbp1a genetic polymorphisms using 202 vivax clinical isolates from six countries. Pvrbp1a was separated into six regions based on specific domain features, sequence conserved/polymorphic regions, and the reticulocyte binding like (RBL) domains. In the fragmented gene sequence analysis, PvRBP1a region II (RII) and RIII (head and tail structure homolog, 152-625 aa.) showed extensive polymorphism caused by random point mutations. The haplotype network of these polymorphic regions was classified into three clusters that converged to independent populations. Antigenicity screening was performed using recombinant proteins PvRBP1a-N (157-560 aa.) and PvRBP1a-C (606-962 aa.), which contained head and tail structure region and sequence conserved region, respectively. Sensitivity against PvRBP1a-N (46.7%) was higher than PvRBP1a-C (17.8%). PvRBP1a-N was reported as a reticulocyte binding domain and this study identified a linear epitope with moderate antigenicity, thus an attractive domain for merozoite invasion-blocking vaccine development. However, our study highlights that a global PvRBP1a-based vaccine design needs to overcome several difficulties due to three distinct genotypes and low antigenicity levels.
  4. Thriemer K, Bobogare A, Ley B, Gudo CS, Alam MS, Anstey NM, et al.
    Malar J, 2018 Jun 20;17(1):241.
    PMID: 29925430 DOI: 10.1186/s12936-018-2380-8
    The goal to eliminate malaria from the Asia-Pacific by 2030 will require the safe and widespread delivery of effective radical cure of malaria. In October 2017, the Asia Pacific Malaria Elimination Network Vivax Working Group met to discuss the impediments to primaquine (PQ) radical cure, how these can be overcome and the methodological difficulties in assessing clinical effectiveness of radical cure. The salient discussions of this meeting which involved 110 representatives from 18 partner countries and 21 institutional partner organizations are reported. Context specific strategies to improve adherence are needed to increase understanding and awareness of PQ within affected communities; these must include education and health promotion programs. Lessons learned from other disease programs highlight that a package of approaches has the greatest potential to change patient and prescriber habits, however optimizing the components of this approach and quantifying their effectiveness is challenging. In a trial setting, the reactivity of participants results in patients altering their behaviour and creates inherent bias. Although bias can be reduced by integrating data collection into the routine health care and surveillance systems, this comes at a cost of decreasing the detection of clinical outcomes. Measuring adherence and the factors that relate to it, also requires an in-depth understanding of the context and the underlying sociocultural logic that supports it. Reaching the elimination goal will require innovative approaches to improve radical cure for vivax malaria, as well as the methods to evaluate its effectiveness.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links