Displaying all 15 publications

Abstract:
Sort:
  1. Tsai MH, Megat Abdul Wahab R, Yazid F
    Arch Oral Biol, 2021 Dec;132:105278.
    PMID: 34634537 DOI: 10.1016/j.archoralbio.2021.105278
    OBJECTIVE: The optimal timing of orthodontic tooth movement (OTM) could allow earlier tooth movements across alveolar bone defects while minimizing the adverse effects. The objective of this scoping systematic review was therefore designed to review pre-clinical animal studies on the ideal protocol for the timing of orthodontic traction across alveolar defects augmented with synthetic scaffolds.

    DESIGN: Following the PRISMA-ScR guidelines, three electronic databases were searched (Pubmed, Scopus and Web of Science).

    RESULTS: A total of twelve studies were included in the final review that reported on small-animal (rats, guinea pigs, rabbits) and large-animal (dogs and goats) models. Based on the grafting biomaterials, eight papers used cell-free scaffolds, four articles utilised cell-based scaffolds. The timing protocol for the initiation of OTM employed in the studies ranged from immediate to 6 months after surgical grafting. Only four studies included autologous bone graft (gold standard) as positive control. Most papers reported positive results with regards to the rate of OTM and bone augmentation effects while only a few reported side effects such as root resorptions. Overall, the included articles showed a massive heterogeneity in terms of the animal bone defect model characteristics, scaffold materials, study designs, parameters of OTM and methods of analysis.

    CONCLUSION: Since there was inadequate evidence to identify the optimal protocol of OTM, optimization of animal bone defect models and outcome measurements is needed to improve the translational ability of future studies.

  2. Bala Sundram M, Kuppusamy E, Yazid F, Rani H
    Digit Health, 2023;9:20552076231203949.
    PMID: 37846402 DOI: 10.1177/20552076231203949
    OBJECTIVE: Dental caries is preventable, yet it remains a common childhood disease. As children are dependent on their parents for oral health care, oral health education for parents is essential to ensure they understand the risk factors and consequences of dental caries and their role in its prevention. This study aims to explore parents' oral health education needs to enable the development and provision of a tailored online oral health education module.

    METHODS: Online focus group discussions were conducted among Malaysian parents to gather information about the content, layout and presentation of oral health information parents sought for the provision of oral health care for their children. Video recordings were transcribed verbatim and thematic analysis was performed using an inductive approach.

    RESULTS: In total, 24 parents participated in the discussions and 4 main themes were uncovered. The first theme was perceived information needs related to dental caries, oral health care and the importance of deciduous teeth. The second theme was parents' preferred information resources which were social media, dentists, mobile phone applications and medical personnel. Thirdly, information delivery format and specific characteristics were recommended. The final theme was challenges and barriers faced in maintaining oral health due to parental constraints, child behaviour and external factors.

    CONCLUSION: Parents' profound feedback and experiential standpoint stipulate the need for the development and delivery of a comprehensible and visually engaging oral health education module by healthcare professionals via social media to enable access to evidence-based information consistently.

  3. Vijyakumar M, Ashari A, Yazid F, Rani H, Kuppusamy E
    J Clin Pediatr Dent, 2024 Mar;48(2):143-148.
    PMID: 38548644 DOI: 10.22514/jocpd.2024.042
    This study assessed the reliability of smartphone images of plaque-disclosed anterior teeth for evaluating plaque scores among preschool children. Additionally, the reliability of plaque scores recorded from smartphone images of anterior teeth in representing the overall clinical plaque score was also assessed. Fifteen preschool children were recruited for this pilot study. The Simplified Debris Index (DI-S), the debris component of the Simplified Oral Hygiene Index, was used to record the plaque score. A plaque-disclosing tablet was used to disclose the plaque before the plaque score recording. Following that, the image of the anterior teeth (canine to canine) of both the upper and lower arch was captured using the smartphone. Each child had three different DI-S recorded. For the first recording of the overall clinical DI-S, the plaque score was recorded clinically from index teeth 55 (buccal), 51 (labial), 65 (buccal), 71 (labial), 75 (lingual) and 85 (lingual). For the second recording, anterior clinical DI-S, the plaque score was recorded clinically from the labial surfaces of six anterior teeth only (53, 51, 63, 73, 71 and 83). Two weeks later, anterior photographic DI-S (third recording) was done using the smartphone images of the same index teeth used for the second recording. The intra-class correlation coefficient (ICC) was calculated to evaluate the reliability of smartphone images in assessing plaque scores. The results showed high reliability (ICC = 0.987) between anterior clinical and anterior photographic examinations, indicating that smartphone images are highly reliable for evaluating plaque scores. Similarly, high reliability (ICC = 0.981) was also found for comparison between overall clinical DI-S and anterior photographic DI-S, indicating plaque scores recorded from smartphone images of anterior teeth alone can represent the overall clinical plaque score. This study suggests that smartphone images can be a valuable tool for remote screening and monitoring of oral hygiene in preschool children, contributing to better oral health outcomes.
  4. Norfitriah E, Mohamed Rasheed ZB, Yazid F, Nasruddin NS
    Cureus, 2024 Oct;16(10):e71404.
    PMID: 39539922 DOI: 10.7759/cureus.71404
    The relationship between body mass index (BMI) and the severity of dental caries in children varies significantly across different age groups, with some studies showing favorable associations. At the same time, some found no or inverse links. This review examines the existing literature on the relationship between BMI and the severity of dental caries among primary school children specifically between the ages of six and 12. This review follows the preferred reporting items for scoping reviews (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Review (PRISMA-ScR)) guidelines. A comprehensive literature search was performed utilizing PubMed, Scopus, and Web of Science (WoS) to identify relevant studies published in English from January 2015 to June 2024. Studies on primary school children aged six to 12 years old, BMI, and severity of caries were included. Five hundred and seventy-seven articles were screened with 26 meeting the inclusion criteria. The majority of the studies were cross-sectional in design. The study identified a varied association between BMI and dental caries. Further understanding of this relationship can guide the development of preventive strategies and interventions that address childhood disproportionate BMI and dental caries, ultimately enhancing oral health and overall well-being in this population.
  5. Hagar MN, Yazid F, Luchman NA, Ariffin SHZ, Wahab RMA
    BMC Oral Health, 2021 May 15;21(1):263.
    PMID: 33992115 DOI: 10.1186/s12903-021-01621-0
    BACKGROUND: Mesenchymal stem cells isolated from the dental pulp of primary and permanent teeth can be differentiated into different cell types including osteoblasts. This study was conducted to compare the morphology and osteogenic potential of stem cells from exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSC) in granular hydroxyapatite scaffold (gHA). Preosteoblast cells (MC3T3-E1) were used as a control group.

    METHODOLOGY: The expression of stemness markers for DPSC and SHED was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR). Alkaline phosphatase assay was used to compare the osteoblastic differentiation of these cells (2D culture). Then, cells were seeded on the scaffold and incubated for 21 days. Morphology assessment using field emission scanning electron microscopy (FESEM) was done while osteogenic differentiation was detected using ALP assay (3D culture).

    RESULTS: The morphology of cells was mononucleated, fibroblast-like shaped cells with extended cytoplasmic projection. In RT-PCR study, DPSC and SHED expressed GAPDH, CD73, CD105, and CD146 while negatively expressed CD11b, CD34 and CD45. FESEM results showed that by day 21, dental stem cells have a round like morphology which is the morphology of osteoblast as compared to day 7. The osteogenic potential using ALP assay was significantly increased (p 

  6. Abidin IZZ, Manogaran T, Wahab RMA, Yazid F, Ariffin SHZ
    PMID: 35068396 DOI: 10.2174/1574888X17666220124141310
    AIM: The aim of this study was to compare dental pulp tissue in human exfoliated deciduous teeth (SHEDs) and dental pulp stem cells (DPSCs) in response to ascorbic acid as the sole osteoblast inducer.

    BACKGROUND: A cocktail of ascorbic acid, β-glycerophosphate, and dexamethasone has been widely used to induce osteoblast differentiation. However, under certain conditions, β-glycerophosphate and dexamethasone can cause a decrease in cell viability in stem cells.

    OBJECTIVES: This study aims to determine the cytotoxic effect and potential of ascorbic acid as the sole inducer of osteoblast differentiation.

    METHODS: Cytotoxicity analyses in the presence of 10-500 µg/mL ascorbic acid were performed in both cell types using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The concentrations below the IC50 (i.e., 10-150 µg/mL) were used to determine osteoblast differentiation potential of ascorbic acid using the alkaline phosphatase (ALP) assay, von Kossa staining, and reverse transcription-polymerase chain reaction.

    RESULTS: SHEDs and DPSCs proliferated for 21 days, expressed a Mesenchymal Stem Cell (MSC) marker (CD73+), and did not express Hematopoietic Stem Cell (HSC) markers (CD34- and SLAMF1-). SHEDs had a higher range of IC50 values (215-240 µg/mL ascorbic acid), while the IC50 values for DPSCs were 177-211 µg/mL after 24-72 hours. SHEDs treated with 10-100 µg/mL ascorbic acid alone exhibited higher ALP-specific activity and a higher percentage of mineralisation than DPSCs. Both cell types expressed osteoblast markers on day 21, i.e., RUNX2+ and BSP+, in the presence of ascorbic acid.

    CONCLUSIONS: SHEDs survive at higher concentrations of ascorbic acid as compared to DPSC. The cytotoxic effect was only exhibited at ≥250 µg/mL ascorbic acid. In addition, SHED exhibited better ALP and mineralization activities, but lower osteoblast marker expression than DPSC in response to ascorbic acid as the sole inducer.

  7. Basri KN, Yazid F, Megat Abdul Wahab R, Mohd Zain MN, Md Yusof Z, Zoolfakar AS
    PMID: 34634732 DOI: 10.1016/j.saa.2021.120464
    Caries is one of the non-communicable diseases that has a high prevalence trend. The current methods used to detect caries require sophisticated laboratory equipment, professional inspection, and expensive equipment such as X-ray imaging device. A non-invasive and economical method is required to substitute the conventional methods for the detection of caries. UV absorption spectroscopy coupled with chemometrics analysis has emerged as a good potential candidate for such an application. Data preprocessing methods such as mean centre, autoscale and Savitzky-Golay smoothing were implemented to enhance the signal-to-noise ratio of spectra data. Various classification algorithms namely K-nearest neighbours (KNN), logistic regression (LR) and linear discriminant analysis (LDA) were implemented to classify the severity of dental caries into International Caries Detection and Assessment System (ICDAS) scores. The performance of the prediction model was measured and comparatively analysed based on the accuracy, precision, sensitivity, and specificity. The LDA algorithm combined with the Savitzky-Golay preprocessing method had shown the best result with respect to the validation data accuracy, precision, sensitivity and specificity, where each had values of 0.90, 1.00, 0.86 and 1.00 respectively. The area under the curve of the ROC plot computed for the LDA algorithm was 0.95, which indicated that the prediction algorithm was capable of differentiating normal and caries teeth excellently.
  8. Luchman NA, Megat Abdul Wahab R, Zainal Ariffin SH, Nasruddin NS, Lau SF, Yazid F
    PeerJ, 2022;10:e13356.
    PMID: 35529494 DOI: 10.7717/peerj.13356
    BACKGROUND: The selection of appropriate scaffold plays an important role in ensuring the success of bone regeneration. The use of scaffolds with different materials and their effect on the osteogenic performance of cells is not well studied and this can affect the selection of suitable scaffolds for transplantation. Hence, this study aimed to investigate the comparative ability of two different synthetic scaffolds, mainly hydroxyapatite (HA) and polycaprolactone (PCL) scaffolds in promoting in vitro and in vivo bone regeneration.

    METHOD: In vitro cell viability, morphology, and alkaline phosphatase (ALP) activity of MC3T3-E1 cells on HA and PCL scaffolds were determined in comparison to the accepted model outlined for two-dimensional systems. An in vivo study involving the transplantation of MC3T3-E1 cells with scaffolds into an artificial bone defect of 4 mm length and 1.5 mm depth in the rat's left maxilla was conducted. Three-dimensional analysis using micro-computed tomography (micro-CT), hematoxylin and eosin (H&E), and immunohistochemistry analyses evaluation were performed after six weeks of transplantation.

    RESULTS: MC3T3-E1 cells on the HA scaffold showed the highest cell viability. The cell viability on both scaffolds decreased after 14 days of culture, which reflects the dominant occurrence of osteoblast differentiation. An early sign of osteoblast differentiation can be detected on the PCL scaffold. However, cells on the HA scaffold showed more prominent results with intense mineralized nodules and significantly (p 

  9. Tan JHS, Yazid F, Kasim NA, Ariffin SHZ, Wahab RMA
    BMC Oral Health, 2024 Mar 02;24(1):298.
    PMID: 38431618 DOI: 10.1186/s12903-024-04056-5
    OBJECTIVES: To determine the efficacy of a newly developed kit in dentine sialophosphoprotein (DSPP) detection and compare it with enzyme-linked immunosorbent assay (ELISA). User acceptance was also determined.

    MATERIALS AND METHODS: This cross-sectional study consisted of 45 subjects who were divided into 3 groups based on the severity of root resorption using radiographs: normal (RO), mild (RM), and severe (RS). DSPP in GCF samples was analyzed using both methods. Questionnaires were distributed to 30 orthodontists to evaluate future user acceptance.

    RESULTS: The sensitivity and specificity of the kit were 0.98 and 0.8 respectively. The DSPP concentrations measured using ELISA were the highest in the RS group (6.33 ± 0.85 ng/mL) followed by RM group (3.77 ± 0.36 ng/mL) and the RO group had the lowest concentration (2.23 ± 0.55 ng/mL). The new kit portrayed similar results as the ELISA, the optical density (OD) values were the highest in the RS group (0.62 ± 0.10) followed by RM group (0.33 ± 0.03) and the RO group (0.19 ± 0.06). The differences among all the groups were statistically significant (p 

  10. Megat Abdul Wahab R, Abdullah N, Zainal Ariffin SH, Che Abdullah CA, Yazid F
    Molecules, 2020 Jul 08;25(14).
    PMID: 32650572 DOI: 10.3390/molecules25143129
    A hydroxyapatite scaffold is a suitable biomaterial for bone tissue engineering due to its chemical component which mimics native bone. Electronic states which present on the surface of hydroxyapatite have the potential to be used to promote the adsorption or transduction of biomolecules such as protein or DNA. This study aimed to compare the morphology and bioactivity of sinter and nonsinter marine-based hydroxyapatite scaffolds. Field emission scanning electron microscopy (FESEM) and micro-computed tomography (microCT) were used to characterize the morphology of both scaffolds. Scaffolds were co-cultured with 5 × 104/cm2 of MC3T3-E1 preosteoblast cells for 7, 14, and 21 days. FESEM was used to observe the cell morphology, and MTT and alkaline phosphatase (ALP) assays were conducted to determine the cell viability and differentiation capacity of cells on both scaffolds. Real-time polymerase chain reaction (rtPCR) was used to identify the expression of osteoblast markers. The sinter scaffold had a porous microstructure with the presence of interconnected pores as compared with the nonsinter scaffold. This sinter scaffold also significantly supported viability and differentiation of the MC3T3-E1 preosteoblast cells (p < 0.05). The marked expression of Col1α1 and osteocalcin (OCN) osteoblast markers were also observed after 14 days of incubation (p < 0.05). The sinter scaffold supported attachment, viability, and differentiation of preosteoblast cells. Hence, sinter hydroxyapatite scaffold from nacreous layer is a promising biomaterial for bone tissue engineering.
  11. Basri KN, Yazid F, Mohd Zain MN, Md Yusof Z, Abdul Rani R, Zoolfakar AS
    PMID: 38394882 DOI: 10.1016/j.saa.2024.124063
    Dental caries has high prevalence among kids and adults thus it has become one of the global health concerns. The current modern dentistry focused on the preventives measures to reduce the number of dental caries cases. The employment of machine learning coupled with UV spectroscopy plays a crucial role to detect the early stage of caries. Artificial neural network with hyperparameter tuning was employed to train spectral data for the classification based on the International Caries Detection and Assesment System (ICDAS). Spectra preprocessing namely mean center (MC), autoscale (AS) and Savitzky Golay smoothing (SG) were applied on the data for spectra correction. The best performance of ANN model obtained has accuracy of 0.85 with precision of 1.00. Convolutional neural network (CNN) combined with Savitzky Golay smoothing performed on the spectral data has accuracy, precision, sensitivity and specificity for validation data of 1.00 respectively. The result obtained shows that the application of ANN and CNN capable to produce robust model to be used as an early screening of dental caries.
  12. Lee ZJ, Ng SL, Soo E, Abdullah D, Yazid F, Abdul Rahman M, et al.
    Dent Traumatol, 2024 Nov 22.
    PMID: 39578673 DOI: 10.1111/edt.13010
    BACKGROUND/AIM: The optimal storage medium for an avulsed tooth should preserve the viability of periodontal fibroblasts (PDLF) to the highest degree, facilitating the re-attachment of periodontal fibers and improving the prognosis of replantation. This study compared the effect of the PDLF viability in Hank's balanced salt solution (HBSS), supplemented culture medium, that is, Dulbecco's Modified Eagle Medium (DMEM), and four modified HBSS mixtures.

    MATERIAL AND METHODS: Periodontal tissues were obtained from extracted human teeth and processed for PDLF culture. The cells were then exposed to six experimental media: (i) HBSS, (ii) HBSS and ascorbic acid (HBSS + Vit C), (iii) HBSS and platelet-derived growth factor (HBSS + PDGF), (iv) a mixture of HBSS, PDGF, and Vit C (HBSS + PDGF + Vit C), (v) HBSS and platelet lysate (HBSS + PL), and (vi) DMEM for 3, 6, 12, and 24 h. A MTT assay was performed to determine the cell viability.

    RESULTS: Vitamin C-containing media maintained PDLF viability significantly better than HBSS + PDGF and HBSS + PL at 3, 6, 12, and 24 h (p HBSS+Vit C; HBSS+PDGF+Vit C>HBSS+PL>HBSS+PDGF; HBSS). Although DMEM had the highest cell proliferative effect, it is impractical to be used as a transport medium due to its cost, storage, and availability. The supplementation of Vit C yielded significant cell proliferative effects; hence, HBSS + Vit C can be a better alternative as a storage medium than HBSS.

  13. Kuppusamy E, Ratnasingam MD, Yazid F, Rosli TI, Ali AM, Sockalingam SNMP, et al.
    J Int Soc Prev Community Dent, 2023;13(2):133-140.
    PMID: 37223451 DOI: 10.4103/jispcd.JISPCD_213_22
    OBJECTIVES: This study aims to explore the information-seeking behavior patterns of parents with children receiving treatment for early childhood caries (ECC).

    MATERIALS AND METHODS: Semistructured in-depth interviews were conducted with 20 parents of children with ECC. A topic guide was developed, focusing on questions relating to (i) the timing of their seeking information on ECC, (ii) the types of EEC information they seek, and (iii) the resources used to seek information. The interviews were audio-recorded and transcribed verbatim. Thematic analysis was performed, whereby the data were coded and categorized into themes and subthemes.

    RESULTS: Four main themes were identified: the immediacy of seeking information, perceived information need, use of resources, and barriers to seeking information. Parents either sought information immediately after detecting changes to the appearance of their child's teeth, with some being aware of the changes after signs and symptoms developed. The types of information parents usually sought covered the disease, its prevention, and management. Common sources of information were friends, family, the internet, and healthcare professionals. Barriers to seeking information discussed by parents were lack of time as well as insufficiency and inaccuracy of the information they received.

    CONCLUSION: This study highlighted the need for comprehensive, tailored early education on ECC for parents using reliable information sources. There is also a need to empower other nondental healthcare professionals to provide oral healthcare education for parents.

  14. Tan YY, Abdullah D, Abu Kasim NH, Yazid F, Mahamad Apandi NI, Ramanathan A, et al.
    Tissue Cell, 2024 Oct;90:102484.
    PMID: 39068688 DOI: 10.1016/j.tice.2024.102484
    Regenerative endodontics aims to restore pulp tissues, thus preserving the vitality of the tooth. One promising approach involves the utilization of decellularized human dental pulp (DHDP) as a scaffold repopulated with Wharton's Jelly mesenchymal stem cells (WJMSCs). This study aimed to regenerate pulp tissues using DHDP and WJMSCs following pulpectomy in mature canine teeth of a feline animal model and to investigate the histological features of the regenerated pulp. A 12-month-old male domestic shorthaired felines were used as subjects. Teeth were categorized into untreated (Group 1), pulpectomy with mineral trioxide aggregate (MTA) (Group 2), and pulpectomy with DHDP-repopulated scaffold and MTA (Group 3). The animals were sacrificed six weeks post-intervention. H&E and immunohistochemistry using anti-collagen type 1 and laminin antibodies were used to stain the tissue sections. Histological examinations presented pulp-like tissues in Group 3, with tissue components similar to the structures found in Group 1. Immunohistochemical analysis demonstrated the presence of collagen type I and laminin within the regenerated tissues. The root canals of teeth in Group 2 were devoid of pulpal tissue. DHDP with WJMSCs can potentially be used for pulp regeneration, supporting the modality for developing new clinical protocols in stem cell therapy.
  15. Zainol Abidin IZ, Manogaran T, Abdul Wahab RM, Karsani SA, Yazid MD, Yazid F, et al.
    Curr Stem Cell Res Ther, 2023;18(3):417-428.
    PMID: 35762553 DOI: 10.2174/1574888X17666220627145424
    BACKGROUND: Proteomic is capable of elucidating complex biological systems through protein expression, function, and interaction under a particular condition.

    OBJECTIVE: This study aimed to determine the potential of ascorbic acid alone in inducing differentially expressed osteoblast-related proteins in dental stem cells via the liquid chromatography-mass spectrometry/ mass spectrometry (LC-MS/MS) approach.

    METHODS: The cells were isolated from deciduous (SHED) and permanent teeth (DPSC) and induced with 10 μg/mL of ascorbic acid. Bone mineralisation and osteoblast gene expression were determined using von Kossa staining and reverse transcriptase-polymerase chain reaction. The label-free protein samples were harvested on days 7 and 21, followed by protein identification and quantification using LC-MS/MS. Based on the similar protein expressed throughout treatment and controls for SHED and DPSC, overall biological processes followed by osteoblast-related protein abundance were determined using the PANTHER database. STRING database was performed to determine differentially expressed proteins as candidates for SHED and DPSC during osteoblast development.

    RESULTS: Both cells indicated brownish mineral stain and expression of osteoblast-related genes on day 21. Overall, a total of 700 proteins were similar among all treatments on days 7 and 21, with 482 proteins appearing in the PANTHER database. Osteoblast-related protein abundance indicated 31 and 14 proteins related to SHED and DPSC, respectively. Further analysis by the STRING database identified only 22 and 11 proteins from the respective group. Differential expressed analysis of similar proteins from these two groups revealed ACTN4 and ACTN1 as proteins involved in both SHED and DPSC. In addition, three (PSMD11/RPN11, PLS3, and CLIC1) and one (SYNCRIP) protein were differentially expressed specifically for SHED and DPSC, respectively.

    CONCLUSION: Proteome differential expression showed that ascorbic acid alone could induce osteoblastrelated proteins in SHED and DPSC and generate specific differentially expressed protein markers.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links