Displaying all 6 publications

Abstract:
Sort:
  1. Yap SS, Siew WO, Tou TY, Ng SW
    Appl Opt, 2002 Mar 20;41(9):1725-8.
    PMID: 11921803
    A microscope slide acting as a passive waveguide was coated by three separate poly(vinyl alcohol) films that were doped with Coumarin 460, Disodium Fluorescein, and Rhodamine 640 perchlorate. On collinear pumping by a nitrogen laser, these dyes furnished primary red-green-blue laser emissions that were collected and waveguided by the microscope slide but exited from both ends. Frosting the waveguide exit introduced light scattering at the glass-air interface and spatially overlaid the red-green-blue laser emissions that emerged as a uniform white-light beam.
  2. Mohd Nasir N, Lee BK, Yap SS, Thong KL, Yap SL
    Arch Biochem Biophys, 2016 09 01;605:76-85.
    PMID: 27046340 DOI: 10.1016/j.abb.2016.03.033
    Cold plasma is partly ionized non-thermal plasma generated at atmospheric pressure. It has been recognized as an alternative approach in medicine for sterilization of wounds, promotion of wound healing, topical treatment of skin diseases with microbial involvement and treatment of cancer. Cold plasma used in wound therapy inhibits microbes in chronic wound due to its antiseptic effects, while promoting healing by stimulation of cell proliferation and migration of wound relating skin cells. In this study, two types of plasma systems are employed to generate cold plasma: a parallel plate dielectric barrier discharge and a capillary-guided corona discharge. Parameters such as applied voltage, discharge frequency, treatment time and the flow of the carrier gas influence the cold plasma chemistry and therefore change the composition and concentration of plasma species that react with the target sample. Chronic wound that fails to heal often infected by multidrug resistant organisms makes them recalcitrant to healing. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (Pseudomonas aeruginosa) are two common bacteria in infected and clinically non-infected wounds. The efficacies of the cold plasma generated by the two designs on the inactivation of three different isolates of MRSA and four isolates of P. aeruginosa are reported here.
  3. Nee CH, Yap SL, Tou TY, Chang HC, Yap SS
    Sci Rep, 2016 Sep 23;6:33966.
    PMID: 27659184 DOI: 10.1038/srep33966
    Carbon nanomaterials exhibit novel characteristics including enhanced thermal, electrical, mechanical, and biological properties. Nanodiamonds; first discovered in meteorites are found to be biocompatible, non-toxic and have distinct optical properties. Here we show that nanodiamonds with the size of <5 nm are formed directly from ethanol via 1025 nm femtosecond laser irradiation. The absorption of laser energy by ethanol increased non-linearly above 100 μJ accompanied by a white light continuum arises from fs laser filamentation. At laser energy higher than 300 μJ, emission spectra of C, O and H in the plasma were detected, indicating the dissociation of C2H5OH. Nucleation of the carbon species in the confined plasma within the laser filaments leads to the formation of nanodiamonds. The energy dependence and the roles of the nonlinear phenomenon to the formation of homogeneous nanodiamonds are discussed. This work brings new possibility for bottom-up nanomaterials synthesis based on nano and ultrafast laser physics.
  4. Khoo CS, Marzukie MM, Yap SS, Wan Yahya WNN, Tan HJ
    J Neurosci Rural Pract, 2020 Jan;11(1):183-186.
    PMID: 32140026 DOI: 10.1055/s-0039-3402895
    Systemic lupus erythematosus (SLE) is a chronic autoimmune and multisystem disorder, which frequently affects young women. During pregnancy, SLE flares could occur up to 65%, with renal and hematological manifestations being the most common. However, reports on neuropsychiatric lupus in pregnant women are scarce. We herein report a 26-year-old lupus pregnant woman, who had cerebral lupus with concurrent cryptococcal meningitis. This case highlights the complexity in diagnosing and managing our patient to achieve the best outcome for both the mother and infant.
  5. Kee YY, Tan SS, Yong TK, Nee CH, Yap SS, Tou TY, et al.
    Nanotechnology, 2012 Jan 20;23(2):025706.
    PMID: 22166812 DOI: 10.1088/0957-4484/23/2/025706
    Low-temperature growth of indium tin oxide (ITO) nanowires (NWs) was obtained on catalyst-free amorphous glass substrates at 250 °C by Nd:YAG pulsed-laser deposition. These ITO NWs have branching morphology as grown in Ar ambient. As suggested by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), our ITO NWs have the tendency to grow vertically outward from the substrate surface, with the (400) plane parallel to the longitudinal axis of the nanowires. These NWs are low in electrical resistivity (1.6×10⁻⁴ Ω cm) and high in visible transmittance (~90–96%), and were tested as the electrode for organic light emitting devices (OLEDs). An enhanced current density of ~30 mA cm⁻² was detected at bias voltages of ~19–21 V with uniform and bright emission. We found that the Hall mobility of these NWs is 2.2–2.7 times higher than that of ITO film, which can be explained by the reduction of Coulomb scattering loss. These results suggested that ITO nanowires are promising for applications in optoelectronic devices including OLED, touch screen displays, and photovoltaic solar cells.
  6. Zhang Q, Wang PI, Ong GL, Tan SH, Tan ZW, Hii YH, et al.
    Polymers (Basel), 2019 May 09;11(5).
    PMID: 31075895 DOI: 10.3390/polym11050840
    In this work, polymers of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-triphenylamine] with side chains containing: pyrene (C1), diphenyl (C2), naphthalene (C3), and isopropyl (C6) structures were synthesized via a Suzuki coupling reaction. The structures were verified using NMR and cyclic voltammetry measurements provide the HOMO and LUMO of the polymers. The polymer with pyrene (C1) and naphthalene (C3) produced photoluminescence in the green while the polymer with the side chain containing diphenyl (C2) and isopropyl (C6) produce dual emission peaks of blue-green photoluminescence (PL). In order to examine the electroluminescence properties of the polymers, the solutions were spin-coated onto patterned ITO anode, dried, and subsequently coated with an Al cathode layer to form pristine single layer polymer LEDs. The results are compared to a standard PFO sample. The electroluminescence spectra resemble the PL spectra for C1 and C3. The devices of C2, C3, and C6 exhibit voltage-dependent EL. An additional red emission peak was detected for C2 and C6, resulting in spectra with peaks at 435 nm, 490 nm, and 625 nm. The effects of the side chains on the spectral characteristics of the polymer are discussed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links