Displaying all 11 publications

Abstract:
Sort:
  1. Yap MKK
    Biochem Mol Biol Educ, 2023 Jan;51(1):77-80.
    PMID: 36194083 DOI: 10.1002/bmb.21680
    Experiential learning is compromised in meeting the educational demands of our students during the challenging time of the COVID-19 pandemic. A more inclusive, flexible, and objective-oriented experiential learning environment is required. In this context, module-based experiential learning that is executable on a digital platform was designed. The learning module focused on protein biochemistry, contained a combination of asynchronous and synchronous activities categorized into 'Knowledge Hub' and 'Lab-based Movie', across 5 weeks. Digital and module-based experiential learning provides equitable, inclusive, and flexible access to students at remote locations. Furthermore, it is an objective-oriented and highly organized experiential learning framework that encourages students to engage and participate more in the learning process.
  2. Hiu JJ, Yap MKK
    Int J Biol Macromol, 2021 Aug 01;184:776-786.
    PMID: 34174307 DOI: 10.1016/j.ijbiomac.2021.06.145
    Naja sumatrana venom cytotoxin (sumaCTX) is a basic protein which belongs to three-finger toxin family. It has been shown to induce caspase-dependent, mitochondrial-mediated apoptosis in MCF-7 cells at lower concentrations. This study aimed to investigate the alteration of secretome in MCF-7 cells following membrane permeabilization by high concentrations of sumaCTX, using label-free quantitative (LFQ) approach. The degree of membrane permeabilization of sumaCTX was determined by lactate dehydrogenase (LDH) assay and calcein-propidium iodide (PI) assays. LDH and calcein-PI assays revealed time-dependent membrane permeabilization within a narrow concentration range. However, as toxin concentrations increased, prolonged exposure of MCF-7 cells to sumaCTX did not promote the progression of membrane permeabilization. The secretome analyses showed that membrane permeabilization was an event preceding the release of intracellular proteins. Bioinformatics analyses of the LFQ secretome revealed the presence of 105 significantly distinguished proteins involved in metabolism, structural supports, inflammatory responses, and necroptosis in MCF-7 cells treated with 29.8 μg/mL of sumaCTX. Necroptosis was presumably an initial stress response in MCF-7 cells when exposed to high sumaCTX concentration. Collectively, sumaCTX-induced the loss of membrane integrity in a concentration-dependent manner, whereby the cell death pattern of MCF-7 cells transformed from apoptosis to necroptosis with increasing toxin concentrations.
  3. Hiu JJ, Yap MKK
    Biochem Soc Trans, 2020 04 29;48(2):719-731.
    PMID: 32267491 DOI: 10.1042/BST20200110
    The phospholipase A2 (PLA2) and l-amino acid oxidase (LAAO) are two major enzymes found in the venoms from most snake species. These enzymes have been structurally and functionally characterised for their pharmacological activities. Both PLA2 and LAAO from different venoms demonstrate considerable cytotoxic effects on cancer cells via induction of apoptosis, cell cycle arrest and suppression of proliferation. These enzymes produce more pronounced cytotoxic effects in cancer cells than normal cells, thus they can be potential sources as chemotherapeutic agents. It is proposed that PLA2 and LAAO contribute to an elevated oxidative stress due to their catalytic actions, for instance, the ability of PLA2 to produce reactive oxygen species during lipolysis and formation of H2O2 from LAAO catalytic activity which consequently lead to cell death. Nonetheless, the cell-death signalling pathways associated with exposure to these enzymatic toxins are not fully elucidated yet. Here in this review, we will discuss the cytotoxic effects of PLA2 and LAAO in relationship to their catalytic mechanisms and the underlying mechanisms of cytotoxic actions.
  4. Yap MKK, Misuan N
    PMID: 30417596 DOI: 10.1111/bcpt.13169
    Type II diabetes mellitus (T2DM) is a chronic non-communicable disease due to abnormal insulin actions causing uncontrolled hyperglycaemia. The treatment for T2DM, for instance, metformin and incretin mimetic, mainly focuses on the restoration of insulin sensitivity and secretion. Exendin-4 is a short incretin-mimetic peptide consisting of 39 amino acids. It is discovered in the venom of Heloderma suspectum as a full agonist for the glucagon-like peptide 1 (GLP-1) receptor and produces insulinotropic effects. It is more resistant to enzymatic degradation by dipeptidyl-peptidase-4 and has a longer half-life than the endogenous GLP-1; thus, it is further developed as an incretin hormone analogue used to treat T2DM. The helical region of the peptide first interacts with the extracellular N-terminal domain (NTD) of GLP-1 receptor while the C-terminal extension containing the tryptophan cage further enhances its binding affinity. After binding to the NTD of the receptor, it may cause the receptor to switch from its auto-inhibited state of the receptor to its auto-activated state. Exendin-4 enhances the physiological functions of β-cells and the up-regulation of GLP-1 receptors, thus reducing the plasma glucose levels. Moreover, exendin-4 has also been found to ameliorate neuropathy, nephropathy and ventricular remodelling. The therapeutic effects of exendin-4 have also been extrapolated into several clinical trials. Although exendin-4 has a reasonable subcutaneous bioavailability, its half-life is rather short. Therefore, several modifications have been undertaken to improve its pharmacokinetics and insulinotropic potency. This review focuses on the pharmacology of exendin-4 and the structure-function relationships of exendin-4 with GLP-1 receptor. The review also highlights some challenges and future directions in the improvement of exendin-4 as an anti-diabetic drug.
  5. Gurunanselage Don RAS, Yap MKK
    Biomed Pharmacother, 2019 Feb;110:918-929.
    PMID: 30572196 DOI: 10.1016/j.biopha.2018.12.023
    Arctium lappa L. is a perennial herb traditionally consumed to improve well-being. It has been widely reported for its antioxidant properties; however, very little is known for its exact mechanisms underlying the anticancer activity. This study aimed to investigate the mechanisms of anticancer action for different A. lappa root extracts. Arctium lappa root was extracted with ethanol, hexane and ethyl acetate, then examined for in vitro anticancer activity against cancerous HeLa, MCF-7, Jurkat cell lines and non-cancerous 3T3 cell lines. Induction of apoptosis was determined by cellular morphological changes, mitochondrial membrane potential (ΔΨm), caspase-3/7 activity and DNA fragmentation. The active compounds present in the most potent root extracts were identified by LC-ESI-MS. Among all the extracts, ethyl acetate root extract has the highest potency with IC50 of 102.2 ± 42.4 μg/ml, followed by ethanolic root extract in Jurkat T cells, at 24 h. None of the extracts were cytotoxic against 3T3 cells, suggesting that the extracts were selective against cancerous cells only. Both ethyl acetate and ethanolic root extracts exhibited significant morphological changes in Jurkat T cells, including the detachment from adjacent cells, appearance of apoptotic bodies and cells shrinkage. The extracts treated cells also displayed an increase in caspase-3/7 activity and alteration in mitochondrial membrane potential. Only ethyl acetate root extract at IC50 induced DNA fragmentation in Jurkat T cells. LC-ESI-MS analysis of the extract revealed the presence of 8 compounds, of which only 6 compounds with various biological activities reported. These findings suggest that the ethyl acetate extract of A. lappa had strong anticancer potential and induced intrinsic apoptosis via loss of ΔΨm and activation of caspase-3/7 This study can provide new insight to the discovery of new promising lead compound in chemopreventive and chemotherapeutic strategies.
  6. Yong Y, Hiu JJ, Yap MKK
    Adv Protein Chem Struct Biol, 2023;133:193-230.
    PMID: 36707202 DOI: 10.1016/bs.apcsb.2022.08.001
    Snake envenomation is listed as Category A Neglected Tropical Diseases (NTD) by World Health Organization, indicates a severe public health problem. The global figures for envenomation cases are estimated to be more than 1.8 million annually. Even if the affected victims survive the envenomation, they might suffer from permanent morbidity due to local envenomation. One of the most prominent local envenomation is dermonecrosis. Dermonecrosis is a pathophysiological outcome of envenomation that often causes disability in the victims due to surgical amputations, deformities, contracture, and chronic ulceration. The key venom toxins associated with this local symptom are mainly attributed to substantial levels of enzymatic and non-enzymatic toxins as well as their possible synergistic actions. Despite so, the severity of the local tissue damage is based on macroscopic observation of the bite areas. Furthermore, limited knowledge is known about the key biomarkers involved in the pathogenesis of dermonecrosis. The current immunotherapy with antivenom is also ineffective against dermonecrosis. These local effects eventually end up as sequelae. There is also a global shortage of toxins-targeted therapeutics attributed to inadequate knowledge of the actual molecular mechanisms of cytotoxicity. This chapter discusses the characterization of secretory phenotypes of dermonecrosis as an advanced tool to indicate its severity and pathogenesis in envenomation. Altogether, the secretory phenotypes of envenomed cells and tissues represent the precise characteristics of dermonecrosis caused by venom toxins.
  7. Foo SC, Lee ZS, Yap MKK, Tan JW
    3 Biotech, 2023 Feb;13(2):71.
    PMID: 36742448 DOI: 10.1007/s13205-022-03448-0
    Cyanobacteria bioactive compounds are chemical treasure troves for product discovery and development. The wound healing effects and antioxidant capacities of water extracts from Nostoc NIES-2111_MUM004 were evaluated via in vitro wound scratch assay and three antioxidant assays respectively. Results showed that the water extracts were protein-rich and exhibited good antioxidant properties in ABTS radical scavenging (11.27 ± 0.205 mg TAE g-1 extract), Ferric reducing antioxidant power (1652.71 ± 110.71 mg TAE g-1 extract) and β-carotene bleaching assay (354.90 ± 31.80 mg TAE g-1 extract). Also, extracts were non-cytotoxic in concentrations up to 250 µg/mL as reflected in cytotoxicity assay. Importantly, water extracts showed considerable proliferation and migration activity at 125 µg/mL with wound closure rate as high as 42.67%. Statistical correlation revealed no significant relationship (p > 0.05) between protein fraction and the wound healing properties, confirming that phycobiliproteins were not solely responsible for wound healing activities. Subsequent Q-TOF-LCMS analysis identified six protein families involved in enhancing the proliferation and migration of epithelial cells. These findings are antecedent in the uncovering of continuous supplies of bioactive compounds from new and sustainable sources. Ultimately, enriching the microalgae menu for applications in pharmaceutical, nutraceutical and cosmeceuticals.
  8. Misuan N, Mohamad S, Tubiana T, Yap MKK
    J Biomol Struct Dyn, 2023 Mar 16.
    PMID: 36927291 DOI: 10.1080/07391102.2023.2188945
    Cytotoxin (CTX) is a three-finger toxin presents predominantly in cobra venom. The functional site of the toxin is located at its three hydrophobic loop tips. Its actual mechanism of cytotoxicity remains inconclusive as few conflicting hypotheses have been proposed in addition to direct cytolytic effects. The present work investigated the interaction between CTX and death receptor families via ensemble-based molecular docking and fluorescence titration analysis. Multiple sequence alignments of different CTX isoforms obtained a conserved CTX sequence. The three-dimensional structure of the conserved CTX was later determined using homology modelling, and its quality was validated. Ensemble-based molecular docking of CTX was performed with different death receptors, such as Fas-ligand and tumor necrosis factor receptor families. Our results showed that tumor necrosis factor receptor 1 (TNFR1) was the best receptor interacting with CTX attributed to the interaction of all three functional loops and evinced with low HADDOCK, Z-score and RMSD value. The interaction between CTX and TNFR1 was also supported by a concentration-dependent reduction of fluorescence intensity with increasing binding affinity. The possible intermolecular interactions between CTX and TNFR1 were Van der Waals forces and hydrogen bonding. Our findings suggest a possibility that CTX triggers apoptosis cell death through non-covalent interactions with TNFR1.Communicated by Ramaswamy H. Sarma.
  9. Hiu JJ, Fung JKY, Tan HS, Yap MKK
    Sci Rep, 2023 Jul 28;13(1):12271.
    PMID: 37507457 DOI: 10.1038/s41598-023-39222-2
    Approximate 70% of cobra venom is composed of cytotoxin (CTX), which is responsible for the dermonecrotic symptoms of cobra envenomation. However, CTX is generally low in immunogenicity, and the antivenom is ineffective in attenuating its in vivo toxicity. Furthermore, little is known about its epitope properties for empirical antivenom therapy. This study aimed to determine the epitope sequences of CTX using the immunoinformatic analyses and epitope-omics profiling. A conserved CTX was used in this study to determine its T-cell and B-cell epitope sequences using immunoinformatic tools and molecular docking simulation with different Human Leukocyte Antigens (HLAs). The potential T-cell and B-cell epitopes were 'KLVPLFY,' 'CPAGKNLCY,' 'MFMVSTPTK,' and 'DVCPKNSLL.' Molecular docking simulations disclosed that the HLA-B62 supertype exhibited the greatest binding affinity towards cobra venom cytotoxin. The namely L7, G18, K19, N20, M25, K33, V43, C44, K46, N47, and S48 of CTX exhibited prominent intermolecular interactions with HLA-B62. The multi-enzymatic-limited-digestion/liquid chromatography-mass spectrometry (MELD/LC-MS) also revealed three potential epitope sequences as 'LVPLFYK,' 'MFMVS,' and 'TVPVKR'. From different epitope mapping approaches, we concluded four potential epitope sites of CTX as 'KLVPLFYK', 'AGKNL', 'MFMVSTPKVPV' and 'DVCPKNSLL'. Site-directed mutagenesis of these epitopes confirmed their locations at the functional loops of CTX. These epitope sequences are crucial to CTX's structural folding and cytotoxicity. The results concluded the epitopes that resided within the functional loops constituted potential targets to fabricate synthetic epitopes for CTX-targeted antivenom production.
  10. Ang BH, Oxley JA, Chen WS, Yap MKK, Song KP, Lee SWH
    PLoS One, 2020;15(5):e0232795.
    PMID: 32413053 DOI: 10.1371/journal.pone.0232795
    INTRODUCTION: There is growing evidence to suggest the importance of self-regulatory practices amongst older adults to sustain mobility. However, the decision to self-regulate driving is a complex interplay between an individual's preference and the influence of their social networks including spouse. To our best knowledge, the influence of an older adult's spouse on their decisions during driving transition has not been explored.

    MATERIALS AND METHODS: This qualitative descriptive study was conducted amongst married older adults aged 60 years and above. All interview responses were transcribed verbatim and examined using thematic approach and interpretative description method.

    RESULTS: A total of 11 married couples were interviewed. Three major themes emerged: [1] Our roles in driving; [2] Challenges to continue driving; and, [3] Our driving strategies to ensure continued driving. Older couples adopted driving strategies and regulated their driving patterns to ensure they continued to drive safely. Male partners often took the active driving role as the principal drivers, while the females adopted a more passive role, including being the passenger to accompany the principal drivers or becoming the co-driver to help in navigation. Other coping strategies include sharing the driving duties as well as using public transportation or mixed mode transportation.

    DISCUSSION: Our findings suggest spouse play a significant role in their partners' decision to self-regulate driving. This underscores a need to recognise the importance of interdependency amongst couples and its impact on their driving decisions and outcomes.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links