OBJECTIVES: To identify the important pharmacophoric features and correlate 3D chemical structure of benzothiazinimines with their anti-HIV potential using 2D, 3D-QSAR and pharmacophore modeling studies.
METHODS: QSAR and pharmacophore mapping studies have been used to relate structural features. 2D QSAR and 3D QSAR studies were performed using partial least square and k-nearest neighbor methodology, coupled with various feature selection methods, viz. stepwise, genetic algorithm, and simulated annealing, to derive QSAR models which were further validated for statistical significance.
RESULTS: The physicochemical descriptor XAHydrophilicArea and SsOHE-index, and alignmentindependent descriptor T_C_Cl_6 showed significant correlation with the anti-HIV activity of benzothiazinimines in 2D QSAR. 3D QSAR results showed the significant effect of electrostatic and steric field descriptors in the anti-HIV potential of benzothiazinimines. The generated pharmacophore hypothesis demonstrated the importance of aromaticity and hydrogen bond acceptors.
CONCLUSION: The significant models obtained in this study suggested that these techniques could be used as a guidance for designing new benzothiazinimines with enhanced anti-HIV potential.
METHODS: The distribution of polymorphic variants in the SLCO1B1 gene at eight loci that spanned approximately 48 kb was investigated in the three different Asian ethnic groups and in 32 non-cancerous liver tissues from Chinese patients.
RESULTS: Of the 26 polymorphisms screened, we found eight polymorphic variants that differed in genotypic and allelic frequencies between the Chinese, Malay and Indian populations. Significant interethnic differences were observed in the genotype frequency distributions across the promoter SNP [g.-11187G>A (P = 0.030)] as well as three coding region SNPs [c.388G>A (P < 0.001); c.571T>C (P < 0.001); c.597C>T (P < 0.001)] in the healthy subjects. Haplotype analysis revealed 12 different haplotypes in both the Chinese and Malay populations and 18 haplotypes in the Indian population. In both the Malay and Indian populations, the htSNPs were c.388A>G, c.571T>C and c.597C>T, whereas in the Chinese population they were g.-11187G>A, c.388A>G and c.597C>T. The c.388A>G and c.597C>T htSNPs accounted for more than 70% of the variations between the three major haplotypes in each Asian ethnic group. In terms of the c.388A>G htSNPs, genotypic-phenotypic association analyses revealed that there was no effect on SLCO1B1 expression in hepatic tissues; in addition, no genotypic-phenotypic associations were evident with regards to the c.597C>T htSNP.
CONCLUSION: Future studies should investigate the phenotypic effects of the c.388A>G htSNP on the disposition of OATP1B1 substrates in Asian populations.