Displaying all 5 publications

Abstract:
Sort:
  1. Redouane F, Jamshed W, Suriya Uma Devi S, Prakash M, Nisar KS, Nasir NAAM, et al.
    Sci Rep, 2021 Nov 25;11(1):22905.
    PMID: 34824297 DOI: 10.1038/s41598-021-02216-z
    Fluidity and thermal transport across the triangular aperture with lower lateral inlet and apply placed at the vertical outlet of the chamber which filled with efficient TiO2-SiO2/water hybrid nanofluid under the parametrical influence. Several parameters are tested like the numbers of Hartmann ([Formula: see text]), Richardson ([Formula: see text]), and Reynolds ([Formula: see text]) were critiqued through streamlines, isotherms, and Nusselt number ([Formula: see text]). Numerical model has to be developed and solved through the Galerkin finite element method (GFEM) by discretized with 13,569 triangular elements optimized through grid-independent analysis. The Hartmann number ([Formula: see text]), exerts minimal impact over the flow and thermal aspects while the other parameters significantly manipulate the physical nature of the flowing and thermal aspects behaviors.
  2. Redouane F, Jamshed W, Devi SSU, Prakash M, Nasir NAAM, Hammouch Z, et al.
    Sci Rep, 2022 Feb 10;12(1):2302.
    PMID: 35145142 DOI: 10.1038/s41598-022-06134-6
    MHD Natural convection, which is one of the principal types of convective heat transfer in numerous research of heat exchangers and geothermal energy systems, as well as nanofluids and hybrid nanofluids. This work focuses on the investigation of Natural convective heat transfer evaluation inside a porous triangular cavity filled with silver-magnesium oxide/water hybrid nanofluid [H2O/Ag-MgO]hnf under a consistent magnetic field. The laminar and incompressible nanofluid flow is taken to account while Darcy-Forchheimer model takes account of the advection inertia effect in the porous sheet. Controlled equations of the work have been approached nondimensional and resolved by Galerkin finite element technique. The numerical analyses were carried out by varying the Darcy, Hartmann, and Rayleigh numbers, porosity, and characteristics of solid volume fraction and flow fields. Further, the findings are reported in streamlines, isotherms and Nusselt numbers. For this work, the parametric impact may be categorized into two groups. One of them has an effect on the structural factors such as triangular form and scale on the physical characteristics of the important outputs such as fluidity and thermal transfer rates. The significant findings are the parameters like Rayleigh and slightly supported by Hartmann along with Darcy number, minimally assists by solid-particle size and rotating factor as clockwise assists the cooler flow at the center and anticlockwise direction assists the warmer flow. Clear raise in heat transporting rate can be obtained for increasing solid-particle size.
  3. Jamshed W, Nasir NAAM, Isa SSPM, Safdar R, Shahzad F, Nisar KS, et al.
    Sci Rep, 2021 Sep 21;11(1):18704.
    PMID: 34548554 DOI: 10.1038/s41598-021-98103-8
    Nowadays, with the advantages of nanotechnology and solar radiation, the research of Solar Water Pump (SWP) production has become a trend. In this article, Prandtl-Eyring hybrid nanofluid (P-EHNF) is chosen as a working fluid in the SWP model for the production of SWP in a parabolic trough surface collector (PTSC) is investigated for the case of numerous viscous dissipation, heat radiations, heat source, and the entropy generation analysis. By using a well-established numerical scheme the group of equations in terms of energy and momentum have been handled that is called the Keller-box method. The velocity, temperature, and shear stress are briefly explained and displayed in tables and figures. Nusselt number and surface drag coefficient are also being taken into reflection for illustrating the numerical results. The first finding is the improvement in SWP production is generated by amplification in thermal radiation and thermal conductivity variables. A single nanofluid and hybrid nanofluid is very crucial to provide us the efficient heat energy sources. Further, the thermal efficiency of MoS2-Cu/EO than Cu-EO is between 3.3 and 4.4% The second finding is the addition of entropy is due to the increasing level of radiative flow, nanoparticles size, and Prandtl-Eyring variable.
  4. Jamshed W, Prakash M, Devi SSU, Ibrahim RW, Shahzad F, Nisar KS, et al.
    Sci Rep, 2021 Dec 15;11(1):24032.
    PMID: 34912014 DOI: 10.1038/s41598-021-03392-8
    A novel hybrid nanofluid was explored in order to find an efficient heat-transmitting fluid to replace standard fluids and revolutionary nanofluids. By using tangent hyperbolic hybrid combination nanoliquid with non-Newtonian ethylene glycol (EG) as a basis fluid and a copper (Cu) and titanium dioxide (TiO2) mixture, this work aims to investigate the viscoelastic elements of the thermal transferring process. Flow and thermal facts, such as a slippery extended surface with magnetohydrodynamic (MHD), suction/injection, form factor, Joule heating, and thermal radiation effects, including changing thermal conductivity, were also integrated. The Keller-Box method was used to perform collective numerical computations of parametric analysis using governing equivalences. In the form of graphs and tables, the results of TiO2-Cu/EG hybrid nanofluid were compared to those of standard Cu/EG nanofluid in important critical physical circumstances. The entropy generation study was used to examine energy balance and usefulness for important physically impacting parameters. Detailed scrutiny on entropy development get assisted with Weissenberg number, magnetic parameter, fractional volumes, injection parameter, thermal radiation, variable thermal conductivity, Biot number, shape variation parameter, Reynolds and Brinkman number. Whereas the entropy gets resisted for slip and suction parameter. In this case, spotted entropy buildup with important parametric ranges could aid future optimization.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links