Displaying all 2 publications

Abstract:
Sort:
  1. Yahaya MS, Salisi MS, Md Isa NM, Meng GY, Haron A
    Future Sci OA, 2020 Jun 02;6(6):FSO580.
    PMID: 32670608 DOI: 10.2144/fsoa-2020-0037
    BACKGROUND: A number of factors are known to reduce fertility rate in animals and one of the important categories of such factors is chromosome anomalies. They can occur with or without causing phenotypic abnormalities on animals; in some cases, they may directly affect meiosis, gametogenesis and the viability of conceptus. In many instances, balanced structural rearrangements can be transmitted to offspring, affecting fertility in subsequent generations.

    AIM: This work investigated the occurrence of chromosome aberrations in Rusa timorensis, Rusa unicolor and Axis axis raised in a nucleus deer farm in Malaysia with a history of declining fertility of unknown origin.

    MATERIALS & METHODS: Blood samples were collected from 60 animals through venipuncture, cultured for 72 h and arrested at metaphase. SmartType® and Ideokar® software were used to karyotype the chromosomes.

    RESULTS: We found 15 out of the 60 animals screened from both sexes harbor some form of chromosome aberration. Chromosomal aberrations exist at the rate of 25% and may not be unconnected with the observed reduced fertility on the farm. Further investigations should be carried out, especially on the offspring of the studied animals to transmission of these aberrations. The animals that are confirmed to transmit the chromosomal aberrations should be culled to arrest the propagation of their abnormalities.

  2. Peter ID, Haron AW, Jesse FFA, Ajat M, Han MHW, Fitri WN, et al.
    Vet World, 2018 Nov;11(10):1466-1472.
    PMID: 30532503 DOI: 10.14202/vetworld.2018.1466-1472
    Conventionally, plasma or milk progesterone evaluations are used to determine the reproductive status of female animals. Collection of such samples is often associated with difficulties of animal handling and restraint. Measurable quantities of progesterone metabolites are found in feces of animals. Their concentrations are known to be well correlated to plasma progesterone levels and are, therefore, used as non-invasive samples for assessing reproductive function in a wide range of animal species. Although the analysis of fecal progesterone metabolites has been widely accepted in many laboratories, several factors are known to affect the results from this valuable analytical technique. Some of these factors include storage/transportation media for fecal samples, type of solvent that is used for extraction of progesterone metabolites from feces, and the type and sensitivity of an assaying technique employed. Although fecal progesterone metabolites analysis is associated with some difficulties, it can effectively be used to monitor reproductive function in a wide range of animal species. This review aims to highlight the usefulness of fecal progesterone metabolite analysis as a non-invasive technique in monitoring reproductive function in animals. The article mainly focuses on the many opportunities and challenges associated with this analytical technique.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links