OBJECTS: This study aimed to evaluate the effects of nature exposure intervention on decision-making skills among mentally fatigued university soccer players. Moreover, different durations of nature exposure were also evaluated.
METHODS: A random control between-subject design was adopted. Players were randomly assigned into six groups with three different durations of the experimental group compared with the corresponding control group (4.17 min: Exp 1 vs. Con 1; 8.33 min: Exp 2 vs. Con 2; and 12.50 min: Exp 3 vs. Con 3). All players were first mentally fatigued by performing a 45-min Stroop task; then, they viewed virtual photos of natural or urban scenes; and finally, they performed a soccer decision-making task.
RESULTS: The subjective ratings of mental fatigue were significantly higher following the Stroop task. Only Exp 3 (12.50 min viewing natural scenes) significantly improved decision-making reaction time compared with Con 3 (p = 0.09). Moreover, the accuracy slightly increased in Exp 3 after the intervention.
CONCLUSION: In line with attention restoration theory, nature exposure significantly improved decision-making skills in mentally fatigue university players. However, the duration must be 12.50 min for each stimulus to stay longer to attract involuntary attention.
RESULTS: We used 43,310 SNPs to infer the population structure, evidence of local adaptation and sources of introduction. The overall genetic differentiation of this species was low. The native populations were differentiated into three genetic clusters, corresponding to the Yangtze, Pearl and Heilongjiang River Systems, respectively. The populations in Malaysia, India and Nepal were introduced from both the Yangtze and Pearl River Systems. Loci and genes involved in putative local selection for native locations were identified. Evidence of both positive and balancing selection was found in the introduced locations. Genes associated with loci under putative selection were involved in many biological functions. Outlier loci were grouped into clusters as genomic islands within some specific genomic regions, which likely agrees with the divergence hitchhiking scenario of divergence-with-gene-flow.
CONCLUSIONS: This study, for the first time, sheds novel insights on the population differentiation of the grass carp, genetics of its strong ability in adaption to diverse environments and sources of some introduced grass carp populations. Our data also suggests that the natural populations of the grass carp have been affected by the aquaculture besides neutral and adaptive forces.