This study investigated the digestive stability of anthocyanins (ACNs) and their interaction with three pectin fractions-water-soluble pectin (WSP), cyclohexanetrans-1,2-diamine tetra-acetic acid-soluble pectin (CSP), and sodium carbonate-soluble pectin (NSP)-in strawberry pulp processed by pasteurization (PS), ultrasound (US), electron beam (EB) irradiation, and high pressure (HP). Compared with the control group, the ACNs content increased to the highest level (312.89 mg/mL), but the retention rate of ACNs in the simulated intestine decreased significantly after US treatment. The monosaccharide compositions indicated that the WSP and CSP possessed more homogalacturonan (HG) domains than the NSP, which contains more rhamngalacturonan-I (RG-I) domains. The microstructure of US-treated pectin was damaged and fragmented. Comprehensive analysis showed that the retention rate of ACNs was closely related to the pectin structure, primarily reflected by the degree of linearity and the integrity of structure. These results revealed the structure-activity relationship between ACNs and pectin during pulp processing.
The dispersion of hyperaccumulators used in the phytoremediation process has caused environmental concerns because of their heavy metal (HM) richness. It is important to reduce the environmental risks and prevent the HM to reenter the ecological cycle and thereby the human food web. In this work, supercritical water gasification (SCWG) technology was used to convert Sedum plumbizincicola into hydrogen (H2) gas and to immobilize HMs into biochar. The H2 production correlated with temperature ranging from 380 to 440 ℃ with the highest H2 yield of 2.74 mol/kg at 440 ℃. The free-radical reaction and steam reforming reaction at high temperatures were likely to be the mechanism behind the H2 production. The analyses of bio-oil by the Gas Chromatography-Mass Spectrometer (GC-MS) and Nuclear magnetic resonance spectroscopy (NMR) illustrated that the aromatic compounds, oxygenated compounds, and phenols were degraded into H2-rich gases. The increase of temperature enhanced the HM immobilization efficiency (>99.2 % immobilization), which was probably due to the quickly formed biochar that helped adsorb HMs. Then those HMs were chemically converted into stable forms through complexation with inorganic components on biochar, e.g., silicates, SiO2, and Al2O3. Consequently, the SCWG process was demonstrated as a promising approach for dispersing hyperaccumulators by immobilizing the hazardous HMs into biochar and simultaneously producing value-added H2-rich gases.