Displaying all 5 publications

Abstract:
Sort:
  1. Ling L, Huang L, Wang J, Zhang L, Wu Y, Jiang Y, et al.
    Interdiscip Sci, 2023 Dec;15(4):560-577.
    PMID: 37160860 DOI: 10.1007/s12539-023-00570-2
    Soft subspace clustering (SSC), which analyzes high-dimensional data and applies various weights to each cluster class to assess the membership degree of each cluster to the space, has shown promising results in recent years. This method of clustering assigns distinct weights to each cluster class. By introducing spatial information, enhanced SSC algorithms improve the degree to which intraclass compactness and interclass separation are achieved. However, these algorithms are sensitive to noisy data and have a tendency to fall into local optima. In addition, the segmentation accuracy is poor because of the influence of noisy data. In this study, an SSC approach that is based on particle swarm optimization is suggested with the intention of reducing the interference caused by noisy data. The particle swarm optimization method is used to locate the best possible clustering center. Second, increasing the amount of geographical membership makes it possible to utilize the spatial information to quantify the link between different clusters in a more precise manner. In conclusion, the extended noise clustering method is implemented in order to maximize the weight. Additionally, the constraint condition of the weight is changed from the equality constraint to the boundary constraint in order to reduce the impact of noise. The methodology presented in this research works to reduce the amount of sensitivity the SSC algorithm has to noisy data. It is possible to demonstrate the efficacy of this algorithm by using photos with noise already present or by introducing noise to existing photographs. The revised SSC approach based on particle swarm optimization (PSO) is demonstrated to have superior segmentation accuracy through a number of trials; as a result, this work gives a novel method for the segmentation of noisy images.
  2. Teo K, Yong CW, Chuah JH, Hum YC, Tee YK, Xia K, et al.
    Arab J Sci Eng, 2021 Aug 16.
    PMID: 34422543 DOI: 10.1007/s13369-021-06040-5
    Hospital readmission shortly after discharge threatens the quality of patient care and leads to increased medical care costs. In the United States, hospitals with high readmission rates are subject to federal financial penalties. This concern calls for incentives for healthcare facilities to reduce their readmission rates by predicting patients who are at high risk of readmission. Conventional practices involve the use of rule-based assessment scores and traditional statistical methods, such as logistic regression, in developing risk prediction models. The recent advancements in machine learning driven by improved computing power and sophisticated algorithms have the potential to produce highly accurate predictions. However, the value of such models could be overrated. Meanwhile, the use of other flexible models that leverage simple algorithms offer great transparency in terms of feature interpretation, which is beneficial in clinical settings. This work presents an overview of the current trends in risk prediction models developed in the field of readmission. The various techniques adopted by researchers in recent years are described, and the topic of whether complex models outperform simple ones in readmission risk stratification is investigated.
  3. Abd Wahab NH, Hasikin K, Wee Lai K, Xia K, Bei L, Huang K, et al.
    PeerJ Comput Sci, 2024;10:e1943.
    PMID: 38686003 DOI: 10.7717/peerj-cs.1943
    BACKGROUND: Maintaining machines effectively continues to be a challenge for industrial organisations, which frequently employ reactive or premeditated methods. Recent research has begun to shift its attention towards the application of Predictive Maintenance (PdM) and Digital Twins (DT) principles in order to improve maintenance processes. PdM technologies have the capacity to significantly improve profitability, safety, and sustainability in various industries. Significantly, precise equipment estimation, enabled by robust supervised learning techniques, is critical to the efficacy of PdM in conjunction with DT development. This study underscores the application of PdM and DT, exploring its transformative potential across domains demanding real-time monitoring. Specifically, it delves into emerging fields in healthcare, utilities (smart water management), and agriculture (smart farm), aligning with the latest research frontiers in these areas.

    METHODOLOGY: Employing the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) criteria, this study highlights diverse modeling techniques shaping asset lifetime evaluation within the PdM context from 34 scholarly articles.

    RESULTS: The study revealed four important findings: various PdM and DT modelling techniques, their diverse approaches, predictive outcomes, and implementation of maintenance management. These findings align with the ongoing exploration of emerging applications in healthcare, utilities (smart water management), and agriculture (smart farm). In addition, it sheds light on the critical functions of PdM and DT, emphasising their extraordinary ability to drive revolutionary change in dynamic industrial challenges. The results highlight these methodologies' flexibility and application across many industries, providing vital insights into their potential to revolutionise asset management and maintenance practice for real-time monitoring.

    CONCLUSIONS: Therefore, this systematic review provides a current and essential resource for academics, practitioners, and policymakers to refine PdM strategies and expand the applicability of DT in diverse industrial sectors.

  4. Teo K, Yong CW, Muhamad F, Mohafez H, Hasikin K, Xia K, et al.
    J Healthc Eng, 2021;2021:9208138.
    PMID: 34765104 DOI: 10.1155/2021/9208138
    Quality of care data has gained transparency captured through various measurements and reporting. Readmission measure is especially related to unfavorable patient outcomes that directly bends the curve of healthcare cost. Under the Hospital Readmission Reduction Program, payments to hospitals were reduced for those with excessive 30-day rehospitalization rates. These penalties have intensified efforts from hospital stakeholders to implement strategies to reduce readmission rates. One of the key strategies is the deployment of predictive analytics stratified by patient population. The recent research in readmission model is focused on making its prediction more accurate. As cost-saving improvements through artificial intelligent-based health solutions are expected, the broad economic impact of such digital tool remains unknown. Meanwhile, reducing readmission rate is associated with increased operating expenses due to targeted interventions. The increase in operating margin can surpass native readmission cost. In this paper, we propose a quantized evaluation metric to provide a methodological mean in assessing whether a predictive model represents cost-effective way of delivering healthcare. Herein, we evaluate the impact machine learning has had on transitional care and readmission with proposed metric. The final model was estimated to produce net healthcare savings at over $1 million given a 50% rate of successfully preventing a readmission.
  5. Peng P, Wu D, Huang LJ, Wang J, Zhang L, Wu Y, et al.
    Interdiscip Sci, 2024 Mar;16(1):39-57.
    PMID: 37486420 DOI: 10.1007/s12539-023-00580-0
    Breast cancer is commonly diagnosed with mammography. Using image segmentation algorithms to separate lesion areas in mammography can facilitate diagnosis by doctors and reduce their workload, which has important clinical significance. Because large, accurately labeled medical image datasets are difficult to obtain, traditional clustering algorithms are widely used in medical image segmentation as an unsupervised model. Traditional unsupervised clustering algorithms have limited learning knowledge. Moreover, some semi-supervised fuzzy clustering algorithms cannot fully mine the information of labeled samples, which results in insufficient supervision. When faced with complex mammography images, the above algorithms cannot accurately segment lesion areas. To address this, a semi-supervised fuzzy clustering based on knowledge weighting and cluster center learning (WSFCM_V) is presented. According to prior knowledge, three learning modes are proposed: a knowledge weighting method for cluster centers, Euclidean distance weights for unlabeled samples, and learning from the cluster centers of labeled sample sets. These strategies improve the clustering performance. On real breast molybdenum target images, the WSFCM_V algorithm is compared with currently popular semi-supervised and unsupervised clustering algorithms. WSFCM_V has the best evaluation index values. Experimental results demonstrate that compared with the existing clustering algorithms, WSFCM_V has a higher segmentation accuracy than other clustering algorithms, both for larger lesion regions like tumor areas and for smaller lesion areas like calcification point areas.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links