Sodium-ion batteries (SIBs) are promising alternatives to replace lithium-ion batteries as future energy storage batteries because of their abundant sodium resources, low cost, and high charging efficiency. In order to match the high energy capacity and density, designing an atomically doped carbonous material as the anode is presently one of the important strategies to commercialize SIBs. In this work, we report the preparation of high-performance dual-atom-doped carbon (C) materials using low-cost corn starch and thiourea (CH4N2S) as the precursors. The electronegativity and radii of the doped atoms and C are different, which can vary the embedding properties of sodium ions (Na+) into/on C. As sulfur (S) can effectively expand the layer spacing, it provides more channels for embedding and de-embedding Na+. The synergistic effect of N and S co-doping can remarkably boost the performance of SIBs. The capacity is preserved at 400 mAh g -1 after 200 cycles at 500 mA g-1; more notably, the initial Coulombic efficiency is 81%. Even at a high rate of high current of 10 A g-1, the cell capacity can still reach 170 mAh g-1. More importantly, after 3000 cycles at 1 A g-1, the capacity decay is less than 0.003% per cycle, which demonstrates its excellent electrochemical performance. These results indicate that high-performance carbon materials can be prepared using low-cost corn starch and thiourea.
Over the past three decades, there has been increasing interest in miniaturized percutaneous nephrolithotomy (mPCNL) techniques featuring smaller tracts as they offer potential solutions to mitigate complications associated with standard PCNL (sPCNL). However, despite this growing acceptance and recognition of its benefits, unresolved controversies and acknowledged limitations continue to impede widespread adoption due to a lack of consensus on optimal perioperative management strategies and procedural tips and tricks. In response to these challenges, an international panel comprising experts from the International Alliance of Urolithiasis (IAU) took on the task of compiling an expert consensus document on mPCNL procedures aimed at providing urologists with a comprehensive clinical framework for practice. This endeavor involved conducting a systematic literature review to identify research gaps (RGs), which formed the foundation for developing a structured questionnaire survey. Subsequently, a two-round modified Delphi survey was implemented, culminating in a group meeting to generate final evidence-based comments. All 64 experts completed the second-round survey, resulting in a response rate of 100.0%. Fifty-eight key questions were raised focusing on mPCNLs within 4 main domains, including general information (13 questions), preoperative work-up (13 questions), procedural tips and tricks (19 questions), and postoperative evaluation and follow-up (13 questions). Additionally, 9 questions evaluated the experts' experience with PCNLs. Consensus was reached on 30 questions after the second-round survey, while professional statements for the remaining 28 key questions were provided after discussion in an online panel meeting. mPCNL, characterized by a tract smaller than 18 Fr and an innovative lithotripsy technique, has firmly established itself as a viable and effective approach for managing upper urinary tract stones in both adults and pediatrics. It offers several advantages over sPCNL including reduced bleeding, fewer requirements for nephrostomy tubes, decreased pain, and shorter hospital stays. The series of detailed techniques presented here serve as a comprehensive guide for urologists, aiming to improve their procedural understanding and optimize patient outcomes.