Displaying all 2 publications

Abstract:
Sort:
  1. Whba R, Su'ait MS, Tian Khoon L, Ibrahim S, Mohamed NS, Ahmad A
    Polymers (Basel), 2021 Feb 23;13(4).
    PMID: 33672185 DOI: 10.3390/polym13040660
    The exploitation of epoxidized natural rubber (ENR) in electrochemical applications is approaching its limits because of its poor thermo-mechanical properties. These properties could be improved by chemical and/or physical modification, including grafting and/or crosslinking techniques. In this work, acrylonitrile (ACN) has been successfully grafted onto ENR- 25 by a radical photopolymerization technique. The effect of (ACN to ENR) mole ratios on chemical structure and interaction, thermo-mechanical behaviour and that related to the viscoelastic properties of the polymer was investigated. The existence of the -C≡N functional group at the end-product of ACN-g-ENR is confirmed by infrared (FT-IR) and nuclear magnetic resonance (NMR) analyses. An enhanced grafting efficiency (~57%) was obtained after ACN was grafted onto the isoprene unit of ENR- 25 and showing a significant improvement in thermal stability and dielectric properties. The viscoelastic behaviour of the sample analysis showed an increase of storage modulus up to 150 × 103 MPa and the temperature of glass transition (Tg) was between -40 and 10 °C. The loss modulus, relaxation process, and tan delta were also described. Overall, the ACN-g-ENR shows a distinctive improvement in characteristics compared to ENR and can be widely used in many applications where natural rubber is used but improved thermal and mechanical properties are required. Likewise, it may also be used in electronic applications, for example, as a polymer electrolyte in batteries or supercapacitor.
  2. Whba R, Su'ait MS, Whba F, Sahinbay S, Altin S, Ahmad A
    Int J Biol Macromol, 2024 Sep;276(Pt 1):133796.
    PMID: 39004255 DOI: 10.1016/j.ijbiomac.2024.133796
    Natural rubber (NR) and its derivatives play indispensable roles in various industries due to their unique properties and versatile applications. However, the widespread utilization of NR faces intrinsic challenges such as limited mechanical strength, poor resistance to heat and organic solvent, poor electrical conductivity, and low compatibility with other materials, prompting researchers to explore enhancing its performance. Modified NRs (MNRs) like cyclization, deproteinization, chlorination, epoxidation, or grafting NR demonstrated a few enhanced merits compared to NR. However, various strategies, such as blending, vulcanization, crosslinking, grafting, plasticization, reinforcement, and nanostructuring, overcame most drawbacks. This review comprehensively examines these challenges and delves into the modification strategies employed to enhance the properties and expand the applications of NR and its derivatives. Furthermore, the review explores future visions for the NR industry, emphasizing integrating advanced modification techniques, adopting sustainable practices, and promoting circular economy principles. By elucidating the inherent challenges, outlining effective modification strategies, and envisioning future trajectories, this review provides valuable insights for stakeholders seeking to navigate and contribute to the sustainable development of the NR sector.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links