MATERIALS AND METHODS: This cross-sectional study was conducted on 258 community dwelling women from urban and rural settings who participated in health campaigns. In order to reduce the sampling bias, half of the study population performed the self-sampling prior to the physician sampling while the other half performed the self-sampling after the physician sampling, randomly. Acquired samples were assessed for cytological changes as well as HPV DNA detection.
RESULTS: The mean age of the subjects was 40.4±11.3 years. The prevalence of abnormal cervical changes was 2.7%. High risk and low risk HPV genotypes were found in 4.0% and 2.7% of the subjects, respectively. A substantial agreement was observed between self-sampling and the physician obtained sampling in cytological diagnosis (k=0.62, 95%CI=0.50, 0.74), micro-organism detection (k=0.77, 95%CI=0.66, 0.88) and detection of hormonal status (k=0.75, 95%CI=0.65, 0.85) as well as detection of high risk (k=0.77, 95%CI=0.4, 0.98) and low risk (K=0.77, 95%CI=0.50, 0.92) HPV. Menopausal state was found to be related with 8.39 times more adequate cell specimens for cytology but 0.13 times less adequate cell specimens for virological assessment.
CONCLUSIONS: This study revealed that self-sampling has a good agreement with physician sampling in detecting HPV genotypes. Self-sampling can serve as a tool in HPV screening while it may be useful in detecting cytological abnormalities in Malaysia.
RESULTS: To investigate the genomic properties and taxonomic status of these strains, we employed both 16S rRNA Sanger sequencing and whole-genome sequencing using the Illumina HiSeq X Ten platform with PE151 (paired-end) sequencing. Our analyses revealed that the draft genome of Actinomyces acetigenes ATCC 49340 T was 3.27 Mbp with a 68.0% GC content, and Actinomyces stomatis ATCC 51655 T has a genome size of 3.08 Mbp with a 68.1% GC content. Multi-locus (atpA, rpoB, pgi, metG, gltA, gyrA, and core genome SNPs) sequence analysis supported the phylogenetic placement of strains ATCC 51655 T and ATCC 49340 T as independent lineages. Digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and average amino acid identity (AAI) analyses indicated that both strains represented novel Actinomyces species, with values below the threshold for species demarcation (70% dDDH, 95% ANI and AAI). Pangenome analysis identified 5,731 gene clusters with strains ATCC 49340 T and ATCC 51655 T possessing 1,515 and 1,518 unique gene clusters, respectively. Additionally, genomic islands (GIs) prediction uncovered 24 putative GIs in strain ATCC 49340 T and 16 in strain ATCC 51655 T, contributing to their genetic diversity and potential adaptive capabilities. Pathogenicity analysis highlighted the potential human pathogenicity risk associated with both strains, with several virulence-associated factors identified. CRISPR-Cas analysis exposed the presence of CRISPR and Cas genes in both strains, indicating these strains might evolve a robust defense mechanism against them.
CONCLUSION: This study supports the classification of strains ATCC 49340 T and ATCC 51655 T as novel species within the Actinomyces, in which the name Actinomyces acetigenes sp. nov. (type strain ATCC 49340 T = VPI D163E-3 T = CCUG 34286 T = CCUG 35339 T) and Actinomyces stomatis sp. nov. (type strain ATCC 51655 T = PK606T = CCUG 33930 T) are proposed.