Displaying all 12 publications

Abstract:
Sort:
  1. Wearn OR, Rowcliffe JM, Carbone C, Bernard H, Ewers RM
    PLoS One, 2013;8(11):e77598.
    PMID: 24223717 DOI: 10.1371/journal.pone.0077598
    The proliferation of camera-trapping studies has led to a spate of extensions in the known distributions of many wild cat species, not least in Borneo. However, we still do not have a clear picture of the spatial patterns of felid abundance in Southeast Asia, particularly with respect to the large areas of highly-disturbed habitat. An important obstacle to increasing the usefulness of camera trap data is the widespread practice of setting cameras at non-random locations. Non-random deployment interacts with non-random space-use by animals, causing biases in our inferences about relative abundance from detection frequencies alone. This may be a particular problem if surveys do not adequately sample the full range of habitat features present in a study region. Using camera-trapping records and incidental sightings from the Kalabakan Forest Reserve, Sabah, Malaysian Borneo, we aimed to assess the relative abundance of felid species in highly-disturbed forest, as well as investigate felid space-use and the potential for biases resulting from non-random sampling. Although the area has been intensively logged over three decades, it was found to still retain the full complement of Bornean felids, including the bay cat Pardofelis badia, a poorly known Bornean endemic. Camera-trapping using strictly random locations detected four of the five Bornean felid species and revealed inter- and intra-specific differences in space-use. We compare our results with an extensive dataset of >1,200 felid records from previous camera-trapping studies and show that the relative abundance of the bay cat, in particular, may have previously been underestimated due to the use of non-random survey locations. Further surveys for this species using random locations will be crucial in determining its conservation status. We advocate the more wide-spread use of random survey locations in future camera-trapping surveys in order to increase the robustness and generality of inferences that can be made.
  2. Wearn OR, Carbone C, Rowcliffe JM, Bernard H, Ewers RM
    Ecol Appl, 2016 Jul;26(5):1409-1420.
    PMID: 27755763 DOI: 10.1890/15-1363
    Diversity responses to land-use change are poorly understood at local scales, hindering our ability to make forecasts and management recommendations at scales which are of practical relevance. A key barrier in this has been the underappreciation of grain-dependent diversity responses and the role that β-diversity (variation in community composition across space) plays in this. Decisions about the most effective spatial arrangement of conservation set-aside, for example high conservation value areas, have also neglected β-diversity, despite its role in determining the complementarity of sites. We examined local-scale mammalian species richness and β-diversity across old-growth forest, logged forest, and oil palm plantations in Borneo, using intensive camera- and live-trapping. For the first time, we were able to investigate diversity responses, as well as β-diversity, at multiple spatial grains, and across the whole terrestrial mammal community (large and small mammals); β-diversity was quantified by comparing observed β-diversity with that obtained under a null model, in order to control for sampling effects, and we refer to this as the β-diversity signal. Community responses to land use were grain dependent, with large mammals showing reduced richness in logged forest compared to old-growth forest at the grain of individual sampling points, but no change at the overall land-use level. Responses varied with species group, however, with small mammals increasing in richness at all grains in logged forest compared to old-growth forest. Both species groups were significantly depauperate in oil palm. Large mammal communities in old-growth forest became more heterogeneous at coarser spatial grains and small mammal communities became more homogeneous, while this pattern was reversed in logged forest. Both groups, however, showed a significant β-diversity signal at the finest grain in logged forest, likely due to logging-induced environmental heterogeneity. The β-diversity signal in oil palm was weak, but heterogeneity at the coarsest spatial grain was still evident, likely due to variation in landscape forest cover. Our findings suggest that the most effective spatial arrangement of set-aside will involve trade-offs between conserving large and small mammals. Greater consideration in the conservation and management of tropical landscapes needs to be given to β-diversity at a range of spatial grains.
  3. Wearn OR, Carbone C, Rowcliffe JM, Pfeifer M, Bernard H, Ewers RM
    J Anim Ecol, 2019 01;88(1):125-137.
    PMID: 30178485 DOI: 10.1111/1365-2656.12903
    The assembly of species communities at local scales is thought to be driven by environmental filtering, species interactions and spatial processes such as dispersal limitation. Little is known about how the relative balance of these drivers of community assembly changes along environmental gradients, especially man-made environmental gradients associated with land-use change. Using concurrent camera- and live-trapping, we investigated the local-scale assembly of mammal communities along a gradient of land-use intensity (old-growth forest, logged forest and oil palm plantations) in Borneo. We hypothesised that increasing land-use intensity would lead to an increasing dominance of environmental control over spatial processes in community assembly. Additionally, we hypothesised that competitive interactions among species might reduce in concert with declines in α-diversity (previously documented) along the land-use gradient. To test our first hypothesis, we partitioned community variance into the fractions explained by environmental and spatial variables. To test our second hypothesis, we used probabilistic models of expected species co-occurrence patterns, in particular focussing on the prevalence of spatial avoidance between species. Spatial avoidance might indicate competition, but might also be due to divergent habitat preferences. We found patterns that are consistent with a shift in the fundamental mechanics governing local community assembly. In support of our first hypothesis, the importance of spatial processes (dispersal limitation and fine-scale patterns of home-ranging) appeared to decrease from low to high intensity land-uses, whilst environmental control increased in importance (in particular due to fine-scale habitat structure). Support for our second hypothesis was weak: whilst we found that the prevalence of spatial avoidance decreased along the land-use gradient, in particular between congeneric species pairs most likely to be in competition, few instances of spatial avoidance were detected in any land-use, and most were likely due to divergent habitat preferences. The widespread changes in land-use occurring in the tropics might be altering not just the biodiversity found in landscapes, but also the fundamental mechanics governing the local assembly of communities. A better understanding of these mechanics, for a range of taxa, could underpin more effective conservation and management of threatened tropical landscapes.
  4. Malhi Y, Riutta T, Wearn OR, Deere NJ, Mitchell SL, Bernard H, et al.
    Nature, 2022 Dec;612(7941):707-713.
    PMID: 36517596 DOI: 10.1038/s41586-022-05523-1
    Old-growth tropical forests are widely recognized as being immensely important for their biodiversity and high biomass1. Conversely, logged tropical forests are usually characterized as degraded ecosystems2. However, whether logging results in a degradation in ecosystem functions is less clear: shifts in the strength and resilience of key ecosystem processes in large suites of species have rarely been assessed in an ecologically integrated and quantitative framework. Here we adopt an ecosystem energetics lens to gain new insight into the impacts of tropical forest disturbance on a key integrative aspect of ecological function: food pathways and community structure of birds and mammals. We focus on a gradient spanning old-growth and logged forests and oil palm plantations in Borneo. In logged forest there is a 2.5-fold increase in total resource consumption by both birds and mammals compared to that in old-growth forests, probably driven by greater resource accessibility and vegetation palatability. Most principal energetic pathways maintain high species diversity and redundancy, implying maintained resilience. Conversion of logged forest into oil palm plantation results in the collapse of most energetic pathways. Far from being degraded ecosystems, even heavily logged forests can be vibrant and diverse ecosystems with enhanced levels of ecological function.
  5. Brodie JF, Mohd-Azlan J, Chen C, Wearn OR, Deith MCM, Ball JGC, et al.
    Nature, 2024 Jan;625(7996):E28.
    PMID: 38182924 DOI: 10.1038/s41586-023-07007-2
  6. Brodie JF, Mohd-Azlan J, Chen C, Wearn OR, Deith MCM, Ball JGC, et al.
    Nature, 2023 Aug;620(7975):807-812.
    PMID: 37612395 DOI: 10.1038/s41586-023-06410-z
    The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines1. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear2-5. Unregulated hunting can empty PAs of large animals6, illegal tree felling can degrade habitat quality7, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape.
  7. Brodie JF, Mohd-Azlan J, Chen C, Wearn OR, Deith MCM, Ball JGC, et al.
    Nature, 2024 Apr;628(8009):E5.
    PMID: 38594342 DOI: 10.1038/s41586-024-07333-z
  8. Ewers RM, Boyle MJ, Gleave RA, Plowman NS, Benedick S, Bernard H, et al.
    Nat Commun, 2015 Apr 13;6:6836.
    PMID: 25865801 DOI: 10.1038/ncomms7836
    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.
  9. Twining JP, Sutherland C, Zalewski A, Cove MV, Birks J, Wearn OR, et al.
    Proc Natl Acad Sci U S A, 2024 Mar 19;121(12):e2312252121.
    PMID: 38466845 DOI: 10.1073/pnas.2312252121
    The social system of animals involves a complex interplay between physiology, natural history, and the environment. Long relied upon discrete categorizations of "social" and "solitary" inhibit our capacity to understand species and their interactions with the world around them. Here, we use a globally distributed camera trapping dataset to test the drivers of aggregating into groups in a species complex (martens and relatives, family Mustelidae, Order Carnivora) assumed to be obligately solitary. We use a simple quantification, the probability of being detected in a group, that was applied across our globally derived camera trap dataset. Using a series of binomial generalized mixed-effects models applied to a dataset of 16,483 independent detections across 17 countries on four continents we test explicit hypotheses about potential drivers of group formation. We observe a wide range of probabilities of being detected in groups within the solitary model system, with the probability of aggregating in groups varying by more than an order of magnitude. We demonstrate that a species' context-dependent proclivity toward aggregating in groups is underpinned by a range of resource-related factors, primarily the distribution of resources, with increasing patchiness of resources facilitating group formation, as well as interactions between environmental conditions (resource constancy/winter severity) and physiology (energy storage capabilities). The wide variation in propensities to aggregate with conspecifics observed here highlights how continued failure to recognize complexities in the social behaviors of apparently solitary species limits our understanding not only of the individual species but also the causes and consequences of group formation.
  10. Mendes CP, Albert WR, Amir Z, Ancrenaz M, Ash E, Azhar B, et al.
    Ecology, 2024 Apr 22.
    PMID: 38650359 DOI: 10.1002/ecy.4299
    Information on tropical Asian vertebrates has traditionally been sparse, particularly when it comes to cryptic species inhabiting the dense forests of the region. Vertebrate populations are declining globally due to land-use change and hunting, the latter frequently referred as "defaunation." This is especially true in tropical Asia where there is extensive land-use change and high human densities. Robust monitoring requires that large volumes of vertebrate population data be made available for use by the scientific and applied communities. Camera traps have emerged as an effective, non-invasive, widespread, and common approach to surveying vertebrates in their natural habitats. However, camera-derived datasets remain scattered across a wide array of sources, including published scientific literature, gray literature, and unpublished works, making it challenging for researchers to harness the full potential of cameras for ecology, conservation, and management. In response, we collated and standardized observations from 239 camera trap studies conducted in tropical Asia. There were 278,260 independent records of 371 distinct species, comprising 232 mammals, 132 birds, and seven reptiles. The total trapping effort accumulated in this data paper consisted of 876,606 trap nights, distributed among Indonesia, Singapore, Malaysia, Bhutan, Thailand, Myanmar, Cambodia, Laos, Vietnam, Nepal, and far eastern India. The relatively standardized deployment methods in the region provide a consistent, reliable, and rich count data set relative to other large-scale pressence-only data sets, such as the Global Biodiversity Information Facility (GBIF) or citizen science repositories (e.g., iNaturalist), and is thus most similar to eBird. To facilitate the use of these data, we also provide mammalian species trait information and 13 environmental covariates calculated at three spatial scales around the camera survey centroids (within 10-, 20-, and 30-km buffers). We will update the dataset to include broader coverage of temperate Asia and add newer surveys and covariates as they become available. This dataset unlocks immense opportunities for single-species ecological or conservation studies as well as applied ecology, community ecology, and macroecology investigations. The data are fully available to the public for utilization and research. Please cite this data paper when utilizing the data.
  11. Ewers RM, Orme CDL, Pearse WD, Zulkifli N, Yvon-Durocher G, Yusah KM, et al.
    Nature, 2024 Jul;631(8022):808-813.
    PMID: 39020163 DOI: 10.1038/s41586-024-07657-w
    Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (<29% biomass removal) retain high conservation value and a largely intact functional composition, and are therefore likely to recover their pre-logging values if allowed to undergo natural regeneration. Second, the most extreme impacts occur in heavily degraded forests with more than two-thirds (>68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked.
  12. Grace MK, Akçakaya HR, Bennett EL, Brooks TM, Heath A, Hedges S, et al.
    Conserv Biol, 2021 12;35(6):1833-1849.
    PMID: 34289517 DOI: 10.1111/cobi.13756
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links