NEW INFORMATION: A new species of the Asian leaf litter toad genus Leptobrachella from Guizhou Province, China is described. Molecular phylogenetic analyses, based on mitochondrial 16S rRNA and COI genes and nuclear RAG1 gene sequences indicated that the new species is genetically divergent from its congeners. The new species could be distinguished from its congeners by a combination of the following characters: (1) body of medium size in males (SVL 31.9 - 32.9 mm); (2) distinct black spots present on flanks; (3) toes rudimentarily webbed, with wide lateral fringes; (4) skin on dorsum shagreened with fine tiny granules and short ridges; (5) heels overlapped when thighs are positioned at right angles to the body; (6) tibia-tarsal articulation reaching interior corner of the eye.A new species of the Asian leaf litter toad genus Leptobrachella from Guizhou Province, China is described. Molecular phylogenetic analyses, based on mitochondrial 16S rRNA and COI genes and nuclear RAG1 gene sequences indicated that the new species is genetically divergent from its congeners. The new species could be distinguished from its congeners by a combination of the following characters: (1) body of medium size in males (SVL 31.9 - 32.9 mm); (2) distinct black spots present on flanks; (3) toes rudimentarily webbed, with wide lateral fringes; (4) skin on dorsum shagreened with fine tiny granules and short ridges; (5) heels overlapped when thighs are positioned at right angles to the body; (6) tibia-tarsal articulation reaching interior corner of the eye.
MATERIALS AND METHODS: We retrospectively reviewed the data of patients with stage I NSGCTs who underwent robotic or laparoscopic RPLND between 2008 and 2017. Perioperative data and oncologic outcomes were reviewed and compared between the two groups. Progression-free survival was analyzed using Kaplan-Meier survival curves and compared between two groups.
RESULTS: A total of 31 and 28 patients underwent R-RPLND and L-RPLND respectively. The preoperative characteristics of the patients were comparable in the two groups. Patients in R-RPLND group had significantly shorter median operative time (140 vs. 175 minutes, P < .001), a shorter median duration to surgical drain removal (2 vs. 4 days, P = .002) and a shorter median postoperative hospital stay (5 vs. 6 days, P = .001). There were no statistical differences in intra- and post-operative complication rate between the groups and the oncologic outcomes were similar in the two groups.
CONCLUSION: In expert hands, R-RPLND and L-RPLND were comparable in oncological parameter and morbidity rate; R-RPLND showed superiority in operation duration, median days to surgical drain removal and postoperative hospital stay for stage I NSGCTs. Multicenter and randomized studies with good power of study and sufficient follow-up duration are required to validate our result.
MATERIALS AND METHODS: This study adhered rigorously to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for literature searches. The literature databases, including PubMed, Embase, Cochrane, and Scopus were systematically searched individually. The methodological quality of the incorporated studies underwent assessment utilizing the radiomics quality score (RQS) tool. A random-effects meta-analysis employing the Harrell concordance index (C-index) was conducted to evaluate the performance of all radiomics models.
RESULTS: Among the 388 studies retrieved, 24 studies encompassing a total of 6,978 cases were incorporated into the systematic review. Furthermore, eight studies, focusing on overall survival as an endpoint, were included in the meta-analysis. The meta-analysis revealed that the estimated random effect of the C-index for all studies utilizing radiomics alone was 0.77 (0.71-0.82), with a substantial degree of heterogeneity indicated by an I2 of 80.17%.
CONCLUSIONS: Based on this review, prognostic modeling utilizing radiomics has demonstrated enhanced efficacy for head and neck cancers; however, there remains room for improvement in this approach. In the future, advancements are warranted in the integration of clinical parameters and multimodal features, balancing multicenter data, as well as in feature screening and model construction within this field.
Methods: Between August 2015 to March 2019, 96 patients in our hospital underwent RALP, with 32 patients as secondary intervention for recurrent UPJO. We compared the perioperative parameters of RALP for both primary UPJO and recurrent UPJO. Patient demographics, perioperative parameters, postoperative outcomes and complications from both groups were analyzed and compared.
Results: RALP was successfully performed for all cases in both groups. The median operating time was longer for secondary RALP than for primary RALP [125 (108.5-155) vs. 151 (120-190) minutes, P=0.004]. There were no conversions to open surgery or significant perioperative complications. No difference in blood loss, transfusion rate and perioperative complication rates was noted between the two groups. The success rates were 98.44% (63/64) and 96.88% (31/32) at a median follow up of 32 and 20 months (P=0.001) for the primary and secondary groups, respectively.
Conclusions: Secondary RALP is associated with significantly longer operative time as compared to primary RALP, especially during the exposure of the UPJO, however it is a safe surgical modality for recurrent UPJO with durable outcome. RALP should be an alternative treatment modality for recurrent UPJO whenever the facility and expert are available.