This study aimed to evaluate the effects of ultrasound on Lactobacillus fermentum BT 8633 in parent and subsequent passages based on their growth and isoflavone bioconversion activities in biotin-supplemented soymilk. The treated cells were also assessed for impact of ultrasound on probiotic properties. The growth of ultrasonicated parent cells increased (P<0.05) by 3.23-9.14% compared to that of the control during fermentation in biotin-soymilk. This was also associated with enhanced intracellular and extracellular (8.4-17.0% and 16.7-49.2%, respectively; P<0.05) β-glucosidase specific activity, leading to increased bioconversion of isoflavones glucosides to aglycones during fermentation in biotin-soymilk compared to that of the control (P<0.05). Such traits may be credited to the reversible permeabilized membrane of ultrasonicated parent cells that have facilitated the transport of molecules across the membrane. The growing characteristics of first, second and third passage of treated cells in biotin-soymilk were similar (P>0.05) to that of the control, where their growth, enzyme and isoflavone bioconversion activities (P>0.05) were comparable. This may be attributed to the temporary permeabilization in the membrane of treated cells. Ultrasound affected probiotic properties of parent L. fermentum, by reducing tolerance ability towards acid (pH 2) and bile; lowering inhibitory activities against selected pathogens and reducing adhesion ability compared to that of the control (P<0.05). The first, second and third passage of treated cells did not exhibit such traits, with the exception of their bile tolerance ability which was inherited to the first passage (P<0.05). Our results suggested that ultrasound could be used to increase bioactivity of biotin-soymilk via fermentation by probiotic L. fermentum FTDC 8633 for the development of functional food.
The importance of bioethanol currently has increased tremendously as it can reduce the total dependency on fossil-fuels, especially gasoline, in the transportation sector. In this study, Ceiba pentandra (kapok fiber) was introduced as a new resource for bioethanol production. The results of chemical composition analysis showed that the cellulose (alpha- and beta-) contents were 50.7%. The glucose composition of the fiber was 59.8%. The high glucose content indicated that kapok fiber is a potential substrate for bioethanol production. However, without a pretreatment, the kapok fiber only yielded 0.8% of reducing sugar by enzymatic hydrolysis. Thus, it is necessary to pre-treat the kapok fiber prior to hydrolysis. Taking into account environmentally friendliness, only simple pretreatments with minimum chemical or energy consumption was considered. It was interesting to see that by adopting merely water, acid and alkaline pretreatments, the yield of reducing sugar was increased to 39.1%, 85.2% and >100%, respectively.
This study was aimed at an evaluation of the potential inheritance of electroporation effects on Lactobacillus fermentum BT 8219 through to three subsequent subcultures, based on their growth, isoflavone bioconversion activities, and probiotic properties, in biotin-supplemented soymilk. Electroporation was seen to cause cell death immediately after treatment, followed by higher growth than the control during fermentation in biotin-soymilk (P<0.05). This was associated with enhanced intracellular and extracellular beta-glucosidase specific activity, leading to increased bioconversion of isoflavone glucosides to aglycones (P<0.05). The growing characteristics, enzyme, and isoflavone bioconversion activities of the first, second, and third subcultures of treated cells in biotin-soymilk were similar to the control (P>0.05). Electroporation affected the probiotic properties of parent L. fermentum BT 8219, by reducing its tolerance towards acid (pH 2) and bile, lowering its inhibitory activities against selected pathogens, and reducing its ability for adhesion, when compared with the control (P<0.05). The first, second, and third subcultures of the treated cells showed comparable traits with that of the control (P>0.05), with the exception of their bile tolerance ability, which was inherited to the treated cells of the first and second subcultures (P<0.05). Our results suggest that electroporation could be used to increase the bioactivity of biotin-soymilk via fermentation with probiotic L. fermentum BT 8219, with a view towards the development of functional foods.
This study aimed at utilizing electroporation to further enhance the growth of lactobacilli and their isoflavone bioconversion activities in biotin-supplemented soymilk. Strains of lactobacilli were treated with different pulsed electric field strength (2.5, 5.0 and 7.5 kV/cm) for 3, 3.5 and 4 ms prior to inoculation and fermentation in biotin-soymilk at 37°C for 24 h. Electroporation triggered structural changes within the cellular membrane of lactobacilli that caused lipid peroxidation (p 9 log CFU/ml after fermentation in biotin-soymilk (p
The growth and survival of Salmonella typhimurium in goat milk samples at different shifting temperatures were evaluated. The growth of S. typhimurium at lower temperatures (5°C, 10°C, and 15°C) exhibited bacteriostatic effects in milk, whereas at ambient temperature (25°C) and at 45°C, this pathogen luxuriantly grew throughout the 12-h stationary phase. At 50°C this pathogen was found to be thermotolerant and could still thrive in the milk. Overall, shifting temperatures from 37°C to 55°C and 60°C clearly indicated S. typhimurium to have reached complete elimination. The results demonstrated that the adaptation and survival of this pathogen directly depend on temperature stress. It is expected that the results will be useful to dairy industries for implementation of good manufacturing practices with a better hazard analysis critical control point approach to predict the microbial risk assessment and also benefit the consumers.
Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. The objective of this study was to evaluate the effects of agrowastes from durian (Durio zibethinus), cempedak (Artocarpus champeden), and mangosteen (Garcinia mangostana) as immobilizers for lactobacilli grown in soymilk. Rinds from the agrowastes were separated from the skin, dried, and ground (150 microm) to form powders and used as immobilizers. Scanning electron microscopy revealed that lactobacilli cells were attached and bound to the surface of the immobilizers. Immobilized cells of Lactobacillus acidophilus FTDC 1331, L. acidophilus FTDC 2631, L. acidophilus FTDC 2333, L. acidophilus FTDC 1733, and L. bulgaricus FTCC 0411 were inoculated into soymilk, stored at room temperature (25 degrees C) and growth properties were evaluated over 168 h. Soymilk inoculated with nonimmobilized cells was used as the control. Utilization of substrates, concentrations of lactic and acetic acids, and changes in pH were evaluated in soymilk over 186 h. Immobilized lactobacilli showed significantly better growth (P < 0.05) compared to the control, accompanied by higher production of lactic and acetic acids in soymilk. Soymilk containing immobilized cells showed greater reduction of soy sugars such as stachyose, raffinose, sucrose, fructose, and glucose compared to the control (P < 0.05).
The objective of this study was to evaluate agricultural wastes as immobilizers for probiotics in liquid foods, such as soy milk. Probiotic strains were initially evaluated for acid and bile tolerance and the ability to produce alpha-galactosidase. Rinds of durian, mangosteen, and jackfruit were dried, ground, and sterilized prior to immobilization of selected strains ( Lactobacillus acidophilus FTDC 1331, L. acidophilus FTDC 2631, L. acidophilus FTDC 2333, L. acidophilus FTDC 1733, and Lactobacillus bulgaricus FTCC 0411). Immobilized cells were inoculated into soy milk, and growth properties were evaluated over 168 h at 37 degrees C. Soy milk containing free cells without agrowastes was used as the control. Immobilized probiotics showed increased growth, greater reduction of stachyose, sucrose, and glucose, higher production of lactic and acetic acids, and lower pH in soy milk compared to the control. The results illustrated that agrowastes could be used for the immobilization of probiotics with enhanced growth, utilization of substrates, and production of organic acids.
Ten strains of Lactobacillus were evaluated for their viability in soymilk. Lactobacillus acidophilus ATCC 314, L. acidophilus FTDC 8833, L. acidophilus FTDC 8633 and L. gasseri FTDC 8131 displayed higher viability in soymilk and were thus selected to be evaluated for viability and growth characteristics in soymilk supplemented with B-vitamins. Pour plate analyses showed that the supplementation of all B-vitamins studied promoted the growth of lactobacilli to a viable count exceeding 7 log CFU/ml. alpha-Galactosidase specific activity of lactobacilli as determined spectrophotometrically showed an increase upon supplementation of B-vitamins. High-performance liquid chromatography analyses revealed that this led to increased hydrolysis of soy oligosaccharides and subsequently higher utilization of simple sugars. Production of organic acids as determined via high-performance liquid chromatography also showed an increase, accompanied by a decrease in pH of soymilk. Additionally, the supplementation of B-vitamins also promoted the synthesis of riboflavin and folic acid by lactobacilli in soymilk. Our results indicated that B-vitamin-supplemented soymilk is a good proliferation medium for strains of lactobacilli.
The potential of N. lappacheum and N. mutabile seed as a source of α-amylase inhibitor peptides was explored based on the local traditional practice of using the seed. Different gastro-digestive enzymes (i.e. pepsin or chymotrypsin) or a sequential digestion were used to extract the peptides. The effects of digestion time and enzyme to substrate (E:S) ratio on the α-amylase inhibitory activity were investigated. Results showed that chymotrypsin was effective in producing the inhibitor peptides from rambutan seed protein at E:S ratio 1:20 for 1 h, whereas pepsin was more effective for pulasan seed protein under the same condition. A total of 20 and 31 novel inhibitor peptides were identified, respectively. These peptides could bind with the subsites of α-amylase (i.e. Trp58, Trp59, Tyr62, Asp96, Arg195, Asp197, Glu233, His299, Asp300, and His305) and formed a sliding barrier that preventing the formation of enzyme/substrate intermediate leading to lower α-amylase activity.
This study aimed at utilizing ultrasound treatment to further enhance the growth of lactobacilli and their isoflavone bioconversion activities in biotin-supplemented soymilk. Strains of lactobacilli (Lactobacillus acidophilus BT 1088, L. fermentum BT 8219, L. acidophilus FTDC 8633, L. gasseri FTDC 8131) were treated with ultrasound (30 kHz, 100 W) at different amplitudes (20%, 60% and 100%) for 60, 120 and 180 s prior to inoculation and fermentation in biotin-soymilk. The treatment affected the fatty acids chain of the cellular membrane lipid bilayer, as shown by an increased lipid peroxidation (P<0.05). This led to increased membrane fluidity and subsequently, membrane permeability (P<0.05). The permeabilized cellular membranes had facilitated nutrient internalization and subsequent growth enhancement (P<0.05). Higher amplitudes and longer durations of the treatment promoted growth of lactobacilli in soymilk, with viable counts exceeding 9 log CFU/mL. The intracellular and extracellular β-glucosidase specific activities of lactobacilli were also enhanced (P<0.05) upon ultrasound treatment, leading to increased bioconversion of isoflavones in soymilk, particularly genistin and malonyl genistin to genistein. Results from this study show that ultrasound treatment on lactobacilli cells promotes (P<0.05) the β-glucosidase activity of cells for the benefit of enhanced (P<0.05) isoflavone glucosides bioconversion to bioactive aglycones in soymilk.
A total of 43 Salmonella enterica isolates belonging to different serovars (Salmonella Albany, Salmonella Agona, Salmonella Corvallis, Salmonella Stanley, Salmonella Typhimurium, Salmonella Mikawasima, and Salmonella Bovismorbificans) were isolated from catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from nine wet markets and eight ponds in Penang, Malaysia. Thirteen, 19, and 11 isolates were isolated from 9 of 32 catfish, 14 of 32 tilapia, and 11 of 44 water samples, respectively. Fish reared in ponds were fed chicken offal, spoiled eggs, and commercial fish feed. The genetic relatedness of these Salmonella isolates was determined by random amplified polymorphic DNA PCR (RAPD-PCR) using primer OPC2, repetitive extragenic palindromic PCR (REP-PCR), and pulsed-field gel electrophoresis (PFGE). Composite analysis of the RAPD-PCR, REP-PCR, and PFGE results showed that the Salmonella serovars could be differentiated into six clusters and 15 singletons. RAPD-PCR differentiated the Salmonella isolates into 11 clusters and 10 singletons, while REP-PCR differentiated them into 4 clusters and 1 singleton. PFGE differentiated the Salmonella isolates into seven clusters and seven singletons. The close genetic relationship of Salmonella isolates from catfish or tilapia obtained from different ponds, irrespective of the type of feed given, may be caused by several factors, such as the quality of the water, density of fish, and size of ponds.
One of the world's challenging energy issues is introducing practical and affordable technology for organosulfur removal in fuel. Adsorptive desulfurization (ADS) can address this issue if highly effective activated carbon (AC) derived from industrial waste with excellent textural properties is used. In this study, the derived ACs from glycerin pitch loaded with P and Fe (AC/P and AC/Fe) were used as adsorbents for the ADS of model fuel oils, such as dibenzothiophene (DBT) at mild operating conditions. Under the optimized experimental conditions, 0.3 g of adsorbent dosage, 60 min reaction time, 30 °C temperature, and pH 4, the maximal DBT removal of 96.28 and 43.64%, respectively, for AC/P and AC/Fe was realized. The results indicated that the phosphorus-doped AC/P increases the selectivity of the ADS mechanism for DBT removal. Kinetic investigations disclosed that the adsorption process follows second-pseudo-order kinetics and the Langmuir adsorption isotherm model. The adsorbents remained active for five successive reuses, indicating their robust real-world applications. The electrochemical properties of the fabricated carbon electrodes were analyzed via cyclic voltammetry by coating the ACs with polytetrafluoroethylene (PTFE) as a binder. The transition-metal-doped AC/Fe, though exhibiting 5 times lower surface area, showed the highest specific capacitance at a scan rate of 5 mVs-1 (0.65 μF cm-2). Similarly, the extended AC:PTFE capacitor at a 10% binder ratio offered the maximum capacitance value (1.13 μF cm-2). The synthesized ACs demonstrated potential application as an electrode material, and hence glycerin pitch could be a low-cost precursor to improve the feasibility of commercial production of AC.
Green diesel as a second-generation biofuel has received enormous attention owing to the huge demand for renewable fuel for addressing the net zero target in 2050. This study examines the development of green diesel research through a bibliometric analysis. The state-of-the-art green diesel research is studied based upon 1285 documents (1153 articles and 132 reviews) retrieved from the Scopus database related to the used keywords. The analysis focused on three categories: publication outcomes, most cited papers, and research area identification. The VOSviewer and RStudio (bibliometrix) were applied to analyse the data, rationalized within the framework of author, affiliation, country, citation analysis, cross-dimensional keyword analysis, research streams, and research gaps. The general result of the study highlighted a continuous incline in article numbers classified into three stages: initiation, exploration, and elevation. Those articles were mainly published in bioenergy-themed journals, including Fuel, Energy & Fuels, and Renewable and Sustainable Energy Reviews. Taufiq-Yap Yun Hin is the highest contributor with 41 articles, and Fuel published 110 articles. The rapid growth of green diesel was also inferred by the extensive spread of research maps worldwide. Amid those swift developments, the state of the art on green diesel through bibliometric analysis is not available to the best of our knowledge as far. Subsequently, this review aims to display the state of the art, research gap, and future forecast of green diesel research.
A dynamic pH junction was used in capillary electrophoresis (CE-DAD) to on-line preconcentrate, separate, and determine trace amounts of sulfonamide antibiotics (SAs) in milk and yoghurt samples in this study. A sample matrix with 0.15% acetic acid and 10% methanol (MeOH) at a pH of 4.0, and a background electrolyte (BGE) that contained 35 mM sodium citrate with 10% MeOH at a pH of 8.5, and an acidic barrage of 0.4% acetic acid with 10% MeOH at a pH of 2.5 were utilised to achieve a stacking effect for SAs through a dynamic pH junction. Under optimised conditions, the proposed preconcentration method showed good linearity (30-500 ng/mL, r2 ≥ 0.9940), low limits of detection (LODs) of 4.1-6.3 ng/mL, and acceptable analytes recovery (81.2-106.9%) with relative standard deviations (RSDs) within 5.3-13.7 (n = 9). The limits of quantification (LOQs) were below the maximum residue limit approved by the European Union (EU) in this type of matrices. Sensitivity enhancement factors of up to 129 were reached with the optimised dynamic pH junction using CE with a diode array detector (DAD). The method was used to determine SAs in fresh milk, low-fat milk, full-cream milk, and yoghurt samples.
The contamination of water sources with the heavy metal contaminant arsenic (As) causes substantial risks to humans, animals, and other living organisms. Therefore, the introduction of methods for the removal of As is important. The present study aimed to investigate the adsorption model and mechanism of As removal utilizing natural soil adsorbents. The batch adsorption technique was used to analyze the impacts of various parameters such as contact time, initial As concentration, pH, and temperature. Adsorption mechanisms were studied through adsorption kinetic, isotherm, and thermodynamic models. The batch adsorption study findings indicate that the optimal conditions for maximum As removal were achieved by application of 2.2 g of adsorbents in 50 μg/L of As solution for 60 min of contact time at a pH of 5.5 ± 0.5 and a temperature of 40 °C. The highest removal efficiency was achieved when red soil was employed as the adsorbent. The kinetic, isotherm, and thermodynamic models revealed that As adsorption was a chemisorptive, nonspontaneous, and endothermic process.