Displaying all 7 publications

Abstract:
Sort:
  1. Md Dzali NB, Wan Taib WR, Zahary MN, Abu Bakar NH, Abd Latif AZ, Ahmad F, et al.
    MyJurnal
    SOX9, a members of SOX family, plays a significant roles in developmental processes during embryogenesis, including brain tissue. Few studies have shown that SOX9has been involved in tumourigenesis of several types of cancer including brain tumour. However, such studies are still lacking in the Malaysian population. The aim of this study was to determine SOX9expression level in several types of brain tumours in East Coast Malaysia. Materials and Methods: Five formalin-fixed pariffin-embedded brain tumour samples of Malay descendants were sectioned by using microtome. RNA extraction was performed with slight modification by adding Trizol during tissue lysis. The RNA was converted to cDNA using reverse transcription technique before SOX9expression was detected using RT q-PCR assay in brain tumours normalized to non-neoplastic brain tissues. Results: Overall results displayed that SOX9gene in all samples were up-regulated. SOX9overexpression was found in both high and low grade glioma (anaplastic and pilocytic astrocytoma respectively). This is consistence with both low grade (benign) and atypical meningioma. Secondary brain tumour also showed up-regulation when compared to normal brain tissue. Conclusion: Up-regulation in SOX9expression in selected brain tumours in Malay patients revealed its significant roles in brain tumourigenesis. Functional studies should be carried out to observe the SOX9functions and mechanism whether they should reflect their diverse roles in Malaysia population.
  2. Al-Jamal HAN, Johan MF, Mat Jusoh SA, Ismail I, Wan Taib WR
    Asian Pac J Cancer Prev, 2018 Jun 25;19(6):1585-1590.
    PMID: 29936783
    Background: Epigenetic silencing of tumor suppressor genes (TSG) is involved in development and
    progression of cancers. Re-expression of TSG is inversely proportionate with STAT3 signaling pathways.
    Demethylation of DNA by 5-Azacytidine (5-Aza) results in re-expression of silenced TSG. Forced expression of
    PRG2 by 5-Aza induced apoptosis in cancer cells. Imatinib is a tyrosine kinase inhibitor that potently inhibits BCR/
    ABL tyrosine kinase resulting in hematological remission in CML patients. However, majority of CML patients treated
    with imatinib would develop resistance under prolonged therapy. Methods: CML cells resistant to imatinib were
    treated with 5-Aza and cytotoxicity of imatinib and apoptosis were determined by MTS and annexin-V, respectively.
    Gene expression analysis was detected by real time-PCR, STATs activity examined using Western blot and methylation
    status of PRG2 was determined by pyrosequencing analysis. Result: Expression of PRG2 was significantly higher in
    K562-R+5-Aza cells compared to K562 and K562-R (p=0.001). Methylation of PRG2 gene was significantly decreased
    in K562-R+5-Aza cells compared to other cells (p=0.021). STAT3 was inactivated in K562-R+5-Aza cells which showed
    higher sensitivity to imatinib. Conclusion: PRG2 gene is a TSG and its overexpression might induce sensitivity to
    imatinib. However, further studies are required to evaluate the negative regulations of PRG2 on STAT3 signaling.
  3. Nur Shafawati AR, Sulong S, Wan Ghazali WS, Abdul Talib N, Wan Taib WR
    MyJurnal
    Rheumatoid Arthritis (RA) is a chronic inflammatory polyarthritis disease predominantly involving synovial tissue of the joints and characterized by destructive and debilitating arthritis (Choy et al., 2012; Weyand, 2000; reviewed by Worthington, 2005; Gabriel et al., 1999). It can cause progressive and irreversible destruction of tendons, cartilage and bone, which leads to lack of ability to perform daily activities (Singh et al., 2015). Although the aetiology of RA remains unsolved, the strength of the genetic component in RA is estimated based on familial aggregation and information about epidemiology and population prevalence (reviewed by Gregersen, 1999, Choy et al., 2012). (Copied from article).
  4. Almajali B, Al-Jamal HAN, Wan Taib WR, Ismail I, Johan MF, Doolaanea AA, et al.
    Asian Pac J Cancer Prev, 2021 Mar 01;22(3):879-885.
    PMID: 33773553 DOI: 10.31557/APJCP.2021.22.3.879
    OBJECTIVE: The natural compound, thymoquinone (TQ) has demonstrated potential anticancer properties in inhibiting cell proliferation and promoting apoptosis in myeloid leukemia cells, breast cancer cells, and others. However, the effect mechanism of TQ on AML cells still not fully understood. In this study, the authors examined the effects of TQ on the expression of JAK/STAT-negative regulator genes SOCS-1, SOCS-3, and SHP-1, and their consequences on cell proliferation and apoptosis in HL60 leukemia cells.

    METHODS: MTT and trypan blue exclusion tests were conducted to determine the 50% inhibitory concentration (IC50) and cell proliferation. FITC Annexin and Guava® reagent were used to study the cell apoptosis and examine the cell cycle phases, respectively. The expression of JAK/STAT-negative regulator genes, SOCS-1, SOCS-3, and SHP-1, was investigated using reverse transcriptase- quantitative PCR (RT-qPCR).

    RESULTS: TQ demonstrated a potential inhibition of HL60 cell proliferation and a significant increase in apoptotic cells in dose and time-dependent manner. TQ significantly induced cycle arrest at G0-G1 phase (P < 0.001) and enhanced the re-expression of JAK/STAT-negative regulator genes.

    CONCLUSION: TQ potentially inhibited HL60 cell proliferation and significantly increased apoptosis with re-expression of JAK/STAT-negative regulator genes suggesting that TQ could be a new therapeutic candidate for leukemia therapy.
    .

  5. Al-Rawashde FA, Wan Taib WR, Ismail I, Johan MF, Al-Wajeeh AS, Al-Jamal HAN
    Asian Pac J Cancer Prev, 2021 Dec 01;22(12):3959-3965.
    PMID: 34967577 DOI: 10.31557/APJCP.2021.22.12.3959
    OBJECTIVE: BCR ABL oncogene encodes the BCR-ABL chimeric protein, which is a constitutively activated non-receptor tyrosine kinase. The BCR-ABL oncoprotein is a key molecular basis for the pathogenesis of chronic myeloid leukemia (CML) via activation of several downstream signaling pathways including JAK/STAT pathway. Development of leukemia involves constitutive activation of signaling molecules including, JAK2, STAT3, STAT5A and STAT5B. Thymoquinone (TQ) is a bioactive constituent of Nigella sativa that has shown anticancer properties in various cancers. The present study aimed to evaluate the effect of TQ on the expression of BCR ABL, JAK2, STAT3, STAT5A and STAT5B genes and their consequences on the cell proliferation and apoptosis in K562 CML cells.

    METHODS: BCR-ABL positive K562 CML cells were treated with TQ. Cytotoxicity was determined by Trypan blue exclusion assay. Apoptosis assay was performed by annexin V-FITC/PI staining assay and analyzed by flow cytometry. Transcription levels of BCR ABL, JAK2, STAT3, STAT5A and STAT5B genes were evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Protein levels of JAK2 and STAT5 were determined by Jess Assay analysis.

    RESULTS: TQ markedly decreased the cell proliferation and induced apoptosis in K562 cells (P < 0.001) in a concentration dependent manner. TQ caused a significant decrease in the transcriptional levels of BCR ABL, JAK2, STAT3, STAT5A and STAT5B genes (P < 0.001). TQ induced a significant decrease in JAK2 and STAT5 protein levels (P < 0.001).

    CONCLUSION: our results indicated that TQ inhibited cell growth of K562 cells via downregulation of BCR ABL/ JAK2/STAT3 and STAT5 signaling and reducing JAK2 and STAT5 protein levels.

  6. Al-Rawashde FA, Al-Sanabra OM, Alqaraleh M, Jaradat AQ, Al-Wajeeh AS, Johan MF, et al.
    Pharmaceuticals (Basel), 2023 Jun 15;16(6).
    PMID: 37375831 DOI: 10.3390/ph16060884
    The epigenetic silencing of tumor suppressor genes (TSGs) is critical in the development of chronic myeloid leukemia (CML). SHP-1 functions as a TSG and negatively regulates JAK/STAT signaling. Enhancement of SHP-1 expression by demethylation provides molecular targets for the treatment of various cancers. Thymoquinone (TQ), a constituent of Nigella sativa seeds, has shown anti-cancer activities in various cancers. However, TQs effect on methylation is not fully clear. Therefore, the aim of this study is to assess TQs ability to enhance the expression of SHP-1 through modifying DNA methylation in K562 CML cells. The activities of TQ on cell cycle progression and apoptosis were evaluated using a fluorometric-red cell cycle assay and Annexin V-FITC/PI, respectively. The methylation status of SHP-1 was studied by pyrosequencing analysis. The expression of SHP-1, TET2, WT1, DNMT1, DNMT3A, and DNMT3B was determined using RT-qPCR. The protein phosphorylation of STAT3, STAT5, and JAK2 was assessed using Jess Western analysis. TQ significantly downregulated the DNMT1 gene, DNMT3A gene, and DNMT3B gene and upregulated the WT1 gene and TET2 gene. This led to hypomethylation and restoration of SHP-1 expression, resulting in inhibition of JAK/STAT signaling, induction of apoptosis, and cell cycle arrest. The observed findings imply that TQ promotes apoptosis and cell cycle arrest in CML cells by inhibiting JAK/STAT signaling via restoration of the expression of JAK/STAT-negative regulator genes.
  7. Aziz NA, Musa NH, Mathews M, Rajenderan KT, Abdul Hamid FS, Hassan S, et al.
    Hum Genome Var, 2024 Apr 23;11(1):19.
    PMID: 38653961 DOI: 10.1038/s41439-024-00275-y
    Hemoglobin (Hb) Vancleave (NM_000518.5:c.431 A > T; dbSNP: rs33918338) is an extremely rare structural hemoglobin variant worldwide, and studies are limited. This report describes the case of a 16-year-old male patient who presented with secondary erythrocytosis. The diagnosis of Hb Vancleave, in combination with codon 41/42 (-TTCT) (NM_000518.5:c.126_129del; dbSNP: rs80356821), was confirmed by direct sequencing. This report highlights the importance of sequencing in the differential diagnosis of beta-thalassemia syndrome in Malaysia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links