Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Ruslimie C, Hasmizam Razali, Wan M. Khairul
    Sains Malaysiana, 2011;40:1179-1186.
    Titanium dioxide photocatalyst was synthesised by microemulsions method under controlled hydrolysis of titanium butoxide, Ti(O(CH2)3)CH3. The synthesised TiO2 photocatalyst was compared with Sigma-commercial TiO2 by carrying out the investigation on its properties using scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis and thermal gravimetric analysis (TGA). The photocatalytic activities for both photocatalysts were studied for atrazine photodegradation.
  2. Rusli WMR, Kedgley AE
    Biomech Model Mechanobiol, 2020 Aug;19(4):1203-1210.
    PMID: 31754950 DOI: 10.1007/s10237-019-01257-8
    The first carpometacarpal (CMC) joint, located at the base of the thumb and formed by the junction between the first metacarpal and trapezium, is a common site for osteoarthritis of the hand. The shape of both the first metacarpal and trapezium contributes to the intrinsic bony stability of the joint, and variability in the morphology of both these bones can affect the joint's function. The objectives of this study were to quantify the morphological variation in the complete metacarpal and trapezium and determine any correlation between anatomical features of these two components of the first CMC joint. A multi-object statistical shape modelling pipeline, consisting of scaling, hierarchical rigid registration, non-rigid registration and projection pursuit principal component analysis, was implemented. Four anatomical measures were quantified from the shape model, namely the first metacarpal articular tilt and torsion angles and the trapezium length and width. Variations in the first metacarpal articular tilt angle (- 6.3° 
  3. Halim NS, Aizat WM, Yahaya BH
    Regen Med, 2019 01;14(1):15-31.
    PMID: 30566028 DOI: 10.2217/rme-2018-0020
    AIM: This study was aimed to investigate the effect of mesenchymal stem cell (MSC)-secreted factors on airway repair.

    MATERIALS & METHODS: An indirect in vitro coculture model of injured airway epithelium explant with MSCs was developed. LC-MS/MS analysis was performed to determine factors secreted by MSCs and their involvement in epithelium repair was evaluated by histopathological assessment.

    RESULTS: The identification of 54 of MSC proteins of which 44 of them were secretory/extracellular proteins. 43 of the secreted proteins were found to be involved in accelerating airway epithelium repair by stimulating the migratory, proliferative and differentiation abilities of the endogenous repair mechanisms. MSC-secreted proteins also initiated epithelial-mesenchymal transition process during early repair.

    CONCLUSION: MSC-secreted factors accelerated airway epithelial repair by stimulating the endogenous reparative and regenerative ability of lung cells.

  4. Wan M. Khairul, Foong, Y.D., Lee, O.J., Lim, S.K.J., Daud, A.I., Rahamathullah, R., et al.
    ASM Science Journal, 2018;11(101):124-135.
    MyJurnal
    A new class of liquid crystalline acetylide-imine system was successfully synthesized, characterized
    and deposited on indium tin oxide (ITO) coated substrate via electrochemical deposition
    method for potential organic film application. The relationship between liquid crystal
    molecular structure, phase transition temperature and electrical performance was evaluated.
    The mesomorphic properties were identified via polarized optic microscopy (POM) which displayed
    fan-shaped texture of smectic A phase and their corresponding transition enthalpies
    are in concurrence with DSC and TGA studies. The findings from the conductivity analysis
    revealed that the fabricated film exhibits good electrical performance where it displayed
    linear current-voltage relationship of I-V curve. Therefore, this proposed type of molecular
    framework has given an ideal indication to act as transporting material for application in
    optoelectronic devices.
  5. Jamal P, Mir S, Alam MZ, Wan Nawawi WM
    J Oleo Sci, 2014;63(8):795-804.
    PMID: 25007747
    Biosurfactants are surface-active compounds produced by different microorganisms. The aim of this study was to introduce palm kernel cake (PKC) as a novel substrate for biosurfactant production using a potent bacterial strain under liquid state fermentation. This study was primarily based on the isolation and identification of biosurfactant-producing bacteria that could utilize palm kernel cake as a new major substrate. Potential bacterial strains were isolated from degraded PKC and screened for biosurfactant production with the help of the drop collapse assay and by analyzing the surface tension activity. From the screened isolates, a new strain, SM03, showed the best and most consistent results, and was therefore selected as the most potent biosurfactant-producing bacterial strain. The new strain was identified as Providencia alcalifaciens SM03 using the Gen III MicroPlate Biolog Microbial Identification System. The yield of the produced biosurfactant was 8.3 g/L.
  6. Sidek HA, Bahari HR, Halimah MK, Yunus WM
    Int J Mol Sci, 2012;13(4):4632-41.
    PMID: 22606000 DOI: 10.3390/ijms13044632
    This paper reports the rapid melt quenching technique preparation for the new family of bismuth-lead germanate glass (BPG) systems in the form of (GeO(2))(60)-(PbO)(40-) (x)-(½Bi(2)O(3))(x) where x = 0 to 40 mol%. Their densities with respect of Bi(2)O(3) concentration were determined using Archimedes' method with acetone as a floatation medium. The current experimental data are compared with those of bismuth lead borate (B(2)O(3))(20)-(PbO)(80-) (x)-(Bi(2)O(3))(x). The elastic properties of BPG were studied using the ultrasonic pulse-echo technique where both longitudinal and transverse sound wave velocities have been measured in each glass samples at a frequency of 15 MHz and at room temperature. Experimental data shows that all the physical parameters of BPG including density and molar volume, both longitudinal and transverse velocities increase linearly with increasing of Bi(2)O(3) content in the germanate glass network. Their elastic moduli such as longitudinal, shear and Young's also increase linearly with addition of Bi(2)O(3) but the bulk modulus did not. The Poisson's ratio and fractal dimensionality are also found to vary linearly with the Bi(2)O(3) concentration.
  7. Wan Mohamed WMI, Sayuti SC, Draman N
    J Taibah Univ Med Sci, 2018 Oct;13(5):432-437.
    PMID: 31435358 DOI: 10.1016/j.jtumed.2018.06.004
    Objectives: The aim of this study was to determine the incidence of hypothyroidism and its associated factors within one-year post radioactive iodine (RAI) therapy.

    Methods: A retrospective study was conducted among patients with hyperthyroidism who received RAI therapy at Nuclear Medicine Clinic, Hospital Universiti Sains Malaysia (HUSM), Kelantan. Data regarding patients' demographics, gender, aetiology of hyperthyroidism, presence of autoantibodies, dose of RAI used and usage of antithyroid drug post RAI therapy were included in the analysis.

    Results: Of a total of 167 screened patients, 137 subjects were eligible for this study. The incidence of hypothyroidism within one year of RAI therapy was 32.9%. Women were found to be less likely to develop hypothyroidism post RAI therapy (adjusted odds ratio, 0.406; 95% confidence interval: 0.181-0.908; p = 0.028). The usage of antithyroid drug post RAI was significantly associated with a lower incidence of hypothyroidism post RAI therapy (adjusted odds ratio, 0.188; 95% confidence interval: 0.081-0.438; p<0.001).

    Conclusion: This study showed a high incidence of hypothyroidism within one-year post RAI therapy. Gender and usage of antithyroid drug post RAI therapy are significantly associated with the development of hypothyroidism.

  8. Azizun NN, Khairul WM, Daud AI, Sarbon NM
    J Food Sci Technol, 2021 Sep;58(9):3338-3345.
    PMID: 34366451 DOI: 10.1007/s13197-020-04893-6
    A bio-nanocomposite film is a polymer blend with nanofiller dispersed in a biopolymer matrix. The aim of this study is to investigate the functional, gas sensing and antimicrobial properties of bio-nanocomposite films incorporated with chicken skin gelatin/ tapioca starch/zinc oxide at different pH levels (pH 4, 6, 7 and 8). Bio-nanocomposite films were prepared using a casting technique followed by the characterization of their functional, gas sensing and antimicrobial properties. Film formulations with pH at different levels showed increased thickness, colour and water vapour permeability (WVP) (p 
  9. Zainal Abidin Talib, Liew, Josephine Ying Chyi, Zulkarnain Zainal, Mahmood Mat Yunus, W., Lim, Kean Pah, Wan M. Daud, Wan Yusoff, et al.
    MyJurnal
    This studies are directed towards measuring the electrical conductivity of the (CuSe)1-xSex metal chalcogenide semi-conductor composites, with different stoichiometric compositions of Se (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8,1.0) in bulk form. The electrical conductivity measurement was carried out at room temperature, using the parallel plate technique. The (CuSe)1-xSex composites were prepared using solid state reaction, by varying the ratio of CuSe:Se, in the reaction mixture. The electrical conductivity of (CuSe)1-xSex was determined to be in the range of 1.17 x 10-8 to 1.02 x 10-1 S/cm. The finding indicated that the electrical conductivity value tended to decrease as the concentration of Se increased. The effect of the concentration of Se, on electrical conductivity of (CuSe)1-xSex composites, is discussed in this paper.
  10. Bahari HR, Sidek HA, Adikan FR, Yunus WM, Halimah MK
    Int J Mol Sci, 2012;13(7):8609-14.
    PMID: 22942723 DOI: 10.3390/ijms13078609
    Heavy metal oxide glasses, containing bismuth and/or lead in their glass structure are new alternatives for rare eart (RE) doped hosts. Hence, the study of the structure of these vitreous systems is of great interest for science and technology. In this research work, GeO(2)-PbO-Bi(2)O(3) glass host doped with Er(3+)/Yb(3+) ions was synthesized by a conventional melt quenching method. The Fourier transform infrared (FTIR) results showed that PbO and Bi(2)O(3) participate with PbO(4) tetragonal pyramids and strongly distort BiO(6) octahedral units in the glass network, which subsequently act as modifiers in glass structure. These results also confirmed the existence of both four and six coordination of germanium oxide in glass matrix.
  11. Ahmad A, Bahri Yusoff MS, Zahiruddin Wan Mohammad WM, Mat Nor MZ
    J Taibah Univ Med Sci, 2018 Apr;13(2):113-122.
    PMID: 31435313 DOI: 10.1016/j.jtumed.2017.12.001
    Objectives: Community-based education (CBE) has an impact on the types of medical students produced at the end of medical training. However, its impact on professional identity development (PID) has not been clearly understood. This study thus explores the effect of the CBE program on PID.

    Methods: A qualitative phenomenological study was conducted on a group of Universiti Sains Malaysia medical students who had finished the Community and Family Case Study (CFCS) program. Data were gathered through focused group discussions and student reflective journals. Participants were sampled using the maximal variation technique of purposive sampling. Three steps of thematic analysis using the Atlasti software were employed to identify categories, subthemes, and themes.

    Results: Personal, role, social, and research identities were generated that contribute to the PID of medical students through the CFCS program. The results indicate that the CFCS program nurtured personal identity through the development of professional skills, soft skills, and personal values. Pertaining to role identity, this is related to patient care in terms of primary care and interprofessional awareness. Pertaining to social identity, the obvious feature was community awareness related to culture, society, and politics. A positive outcome of the CFCS program was found to be its fostering of research skills, which is related to the use of epidemiology and research methods.

    Conclusion: The findings indicate that the CFCS program promotes PID among medical students. The current data highlight and provide insights into the importance of integrating CBE into medical curricula to prepare future doctors for their entry into the profession.

  12. Amin NAAM, Mokhter MA, Salamun N, Wan Mahmood WMA
    Membranes (Basel), 2021 Jul 20;11(7).
    PMID: 34357196 DOI: 10.3390/membranes11070546
    Eutrophication and water pollution caused by a high concentration of phosphate are two concerning issues that affect water quality worldwide. A novel cellulose-based adsorbent, cellulose acetate/graphene oxide/sodium dodecyl sulphate (CA/GO/SDS), was developed for water treatment. A 13% CA solution in a mixture of acetone:dimethylacetamide (2:1) has been electrospun and complexed with a GO/SDS solution. The field emission scanning electron microscope (FESEM) showed that the CA membrane was pure white, while the CA/GO/SDS membrane was not as white as CA and its colour became darker as the GO content increased. The process of phosphate removal from the solutions was found to be aided by the hydroxyl groups on the surface of the CA modified with GO/SDS, as shown by infrared spectroscopy. An optimization condition for the adsorption process was studied by varying pH, immersion time, and the mass of the membrane. The experimental results from phosphate adsorption showed that CA/GO/SDS had an excellent pH adaptability, with an optimum pH of 7, and maximum removal (>87.0%) was observed with a membrane mass of 0.05 g at an initial concentration of 25 mg L-1. A kinetic study revealed that 180 min of contact time could adsorb about 87.2% of phosphate onto the CA/GO/SDS membrane. A typical pseudo-second-order kinetic model successfully portrayed the kinetic sorption of phosphate, and the adsorption equilibrium data were well-correlated with the Langmuir adsorption model, suggesting the monolayer coverage of adsorbed molecules.
  13. Tan AE, Norizah WM, Rahman HA, Aziz BA, Cheah FC
    J Obstet Gynaecol Res, 2005 Aug;31(4):296-301.
    PMID: 16018775 DOI: 10.1111/j.1447-0756.2005.00291.x
    Aim: To determine the incidence of an abnormal umbilical artery resistance index (UARI) in diabetic pregnancies and the relation to fetal outcome and the development of neonatal septal hypertrophic cardiomyopathy.

    Methods: A case-control study with subjects comprising 50 randomly selected diabetic mothers and a matched control group of 50 non-diabetic pregnancies. Doppler studies of the UARI were carried out at least once per week, beginning from 36 weeks' gestation for both groups. Within 48 h post delivery, echocardiograms were carried out on the newborn infants to identify those with hypertrophic cardiomyopathy, particularly asymmetrical septal hypertrophy.

    Results: The numbers of patients with abnormal UARI were similar in both the diabetic and control groups. A higher proportion of operative deliveries for intrapartum fetal distress was seen in patients with an abnormal UARI in the diabetic group. However, the groups did not differ in the numbers of infants who were small for gestational age, who had low Apgar scores or umbilical artery acidosis, and who required admission to the special care nursery. Six infants of diabetic mothers (12%) had septal hypertrophy, but none of these were associated with abnormal antenatal UARI.

    Conclusion: Diabetic pregnancy is not associated with a significantly higher incidence of abnormal UARI on Doppler study than non-diabetic pregnancy. UARI is not a useful single indicator by which to predict subsequent fetal outcome or the development of neonatal septal hypertrophic cardiomyopathy in diabetic pregnancies.
  14. Vigneswari S, Gurusamy TP, Khairul WM, H P S AK, Ramakrishna S, Amirul AA
    Polymers (Basel), 2021 Jul 26;13(15).
    PMID: 34372060 DOI: 10.3390/polym13152454
    Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is a bacterial derived biopolymer widely known for its unique physical and mechanical properties to be used in biomedical application. In this study, antimicrobial agent silver sulfadiazine (SSD) coat/collagen peptide coat-P(3HB-co-4HB) (SCCC) and SSD blend/collagen peptide coat-P(3HB-co-4HB) scaffolds (SBCC) were fabricated using a green salt leaching technique combined with freeze-drying. This was then followed by the incorporation of collagen peptides at various concentrations (2.5-12.5 wt.%) to P(3HB-co-4HB) using collagen-coating. As a result, two types of P(3HB-co-4HB) scaffolds were fabricated, including SCCC and SBCC scaffolds. The increasing concentrations of collagen peptides from 2.5 wt.% to 12.5 wt.% exhibited a decline in their porosity. The wettability and hydrophilicity increased as the concentration of collagen peptides in the scaffolds increased. In terms of the cytotoxic results, MTS assay demonstrated the L929 fibroblast scaffolds adhered well to the fabricated scaffolds. The 10 wt.% collagen peptides coated SCCC and SBCC scaffolds displayed highest cell proliferation rate. The antimicrobial analysis of the fabricated scaffolds exhibited 100% inhibition towards various pathogenic microorganisms. However, the SCCC scaffold exhibited 100% inhibition between 12 and 24 h, but the SBCC scaffolds with SSD impregnated in the scaffold had controlled release of the antimicrobial agent. Thus, this study will elucidate the surface interface-cell interactions of the SSD-P(3HB-co-4HB)-collagen peptide scaffolds and controlled release of SSD, antimicrobial agent.
  15. Mat Yunin MYA, Mohd Adenam N, Khairul WM, Yusoff AH, Adli HK
    Polymers (Basel), 2022 Apr 30;14(9).
    PMID: 35567022 DOI: 10.3390/polym14091853
    Changes in physical properties of (H2C=C(CH3)CO2CH2CH2NH3)2PbI2Cl2 and (H2C=C(CH3)CO2CH2CH2NH3)2Pb(NO3)2Cl2 (2D) perovskite materials from iodide-based (I-AMP) and nitrate-based (N-AMP) leads were investigated at different durations (days) for various storage conditions. UV-Vis spectra of both samples showed an absorption band of around λmax 420 nm due to the transition of n to π* of ethylene (C=C) and amine (NH2). XRD perovskite peaks could be observed at approximately 25.35° (I-AMP) and 23.1° (N-AMP). However, a major shift in I-AMP and dramatic changes in the crystallite size, FHWM and crystallinity percentage highlighted the instability of the iodide-based material. In contrast, N-AMP showed superior stability with 96.76% crystallinity even at D20 under the S condition. Both materials were exposed to ammonia (NH3) gas, and a new XRD peak of ammonium lead iodide (NH4PbI3) with a red-shifted perovskite peak (101) was observed for the case of I-AMP. Based on the FWHM, crystallite size, crystallinity and lattice strain analysis, it can be concluded N-AMP's stability was maintained even after a few days of exposure to the said gases. These novel nitrate-based lead perovskite materials exhibited great potential for stable perovskite 2D materials and recorded less toxicity compared to famous lead iodide (PbI2) material.
  16. Khairul WM, Hashim F, Rahamathullah R, Mohammed M, Aisyah Razali S, Ahmad Tajudin Tuan Johari S, et al.
    PMID: 38134650 DOI: 10.1016/j.saa.2023.123776
    The fabrication of molecular electronics from non-toxic functional materials which eventually would potentially able to degrade or being breaking down into safe by-products have attracted much interests in recent years. Hence, in this study, the introduction of mixed highly functional substructures of chalcone (-CO-CH=CH-) and ethynylated (C≡C) as building blocks has shown ideal performance as solution-processed thin film candidatures. Two types of derivatives, (MM-3a) and (MM-3b) repectively, showed a substantial Stokes shifts at 75 nm and 116 nm, in which such emission exhibits an intramolecular charge transfer (ICT) state and fluoresce characteristics. The density functional theory (DFT) simulation shows that MM-3a and MM-3b exhibit low energy gaps of 3.70 eV and 2.81 eV, respectively. TD-DFT computations for molecular electrostatic potential (MEP) and frontier molecular orbitals (FMO) were also used to emphasise the structure-property relationship. A solution-processed thin film with a single layer of ITO/PEDOT:PSS/MM-3a-MM-3b/Au exhibited electroluminescence behaviour with orange and purple emissions when supplied with direct current (DC) voltages. To promote the safer application of the derivatives formed, ethynylated chalcone materials underwent toxicity studies toward Acanthamoeba sp. to determine their suitability as non-toxic molecules prior to the determination as safer materials in optical limiting interests. From the preliminary test, no IC50 value was obtained for both compounds via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay analysis and molecular docking analysis between MM-3a and MM-3b, with profilin protein exhibited weak bond interactions and attaining huge interaction distances.
  17. Nawawi WMFBW, Jones M, Murphy RJ, Lee KY, Kontturi E, Bismarck A
    Biomacromolecules, 2020 Jan 13;21(1):30-55.
    PMID: 31592650 DOI: 10.1021/acs.biomac.9b01141
    Greener alternatives to synthetic polymers are constantly being investigated and sought after. Chitin is a natural polysaccharide that gives structural support to crustacean shells, insect exoskeletons, and fungal cell walls. Like cellulose, chitin resides in nanosized structural elements that can be isolated as nanofibers and nanocrystals by various top-down approaches, targeted at disintegrating the native construct. Chitin has, however, been largely overshadowed by cellulose when discussing the materials aspects of the nanosized components. This Perspective presents a thorough overview of chitin-related materials research with an analytical focus on nanocomposites and nanopapers. The red line running through the text emphasizes the use of fungal chitin that represents several advantages over the more popular crustacean sources, particularly in terms of nanofiber isolation from the native matrix. In addition, many β-glucans are preserved in chitin upon its isolation from the fungal matrix, enabling new horizons for various engineering solutions.
  18. Cheng S, Lee CT, Wan MN, Tan SG
    Gene, 2013 Apr 15;518(2):412-8.
    PMID: 23328646 DOI: 10.1016/j.gene.2012.12.084
    Termites from the genus Odontotermes are known to contain numerous species complexes that are difficult to tell apart morphologically or with mitochondrial DNA sequences. We developed markers for one such cryptic species complex, that is, Odontotermes srinakarinensis sp. nov. from Maxwell Hill Forest Reserve (Perak, Malaysia), and characterised them using a sample of 41 termite workers from three voucher samples from the same area. We then genotyped 150 termite individuals from 23 voucher samples/colonies of this species complex from several sites in Peninsular Malaysia. We analysed their population by constructing dendograms from the proportion of shared-alleles between individuals and genetic distances between colonies; additionally, we examined the Bayesian clustering pattern of their genotype data. All methods of analysis indicated that there were two distinct clusters within our data set. After the morphologies of specimens from each cluster were reexamined, we were able to separate the two species morphologically and found that a single diagnostic character found on the mandibles of its soldiers could be used to separate the two species quite accurately. The additional species in the clade was identified as Odontotermes denticulatus after it was matched to type specimens at the NHM London and Cambridge Museum of Zoology.
  19. Ghani WM, Razak IA, Yang YH, Talib NA, Ikeda N, Axell T, et al.
    BMC Public Health, 2011;11:82.
    PMID: 21294919 DOI: 10.1186/1471-2458-11-82
    Betel quid chewing is a common habit widely practiced in Southern Asian populations. However, variations are seen in the content of a betel quid across the different countries. Factors associated with commencement and cessation of this habit has been numerously studied. Unfortunately, data on Malaysian population is non-existent. This study aims to determine the factors associated with the inception and also cessation of betel quid chewing behaviour among Malaysian adults.
  20. Azman A, Vasodavan K, Joseph N, Kumar S, Hamat RA, Nordin SA, et al.
    Future Microbiol, 2019 Nov;14:1417-1428.
    PMID: 31777284 DOI: 10.2217/fmb-2019-0174
    Aims: To study physiological and proteomic analysis of Stenotrophomonas maltophilia grown under iron-limited condition. Methods: One clinical and environmental S. maltophilia isolates grown under iron-depleted conditions were studied for siderophore production, ability to kill nematodes and alteration in protein expression using isobaric tags for relative and absolute quantification (ITRAQ). Results & conclusions: Siderophore production was observed in both clinical and environmental strains under iron-depleted conditions. Caenorhabditis elegans assay showed higher killing rate under iron-depleted (96%) compared with normal condition (76%). The proteins identified revealed, 96 proteins upregulated and 26 proteins downregulated for the two isolates under iron depletion. The upregulated proteins included several iron acquisition proteins, metabolic proteins and putative virulence proteins.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links