A method for the chiral separation of propiconazole using cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) with hydroxypropyl-gamma-cyclodextrin (HP-gamma-CD) as chiral selector is reported. The use of a mixture of 30 mM HP-gamma-CD, 50mM SDS, methanol-acetonitrile 10%:5% (v/v) in 25 mM phosphate buffer solution was able to separate two enantiomeric pairs of propiconazole. Stacking- and sweeping-CD-MEKC under neutral pH (pH 7) and under acidic condition (pH 3.0) were used as two on-line preconcentration methods to increase detection sensitivity of propiconazole. Good repeatabilities in the migration time, peak area and peak height were obtained in terms of relative standard deviation (RSD). A sensitivity enhancement factor of 100-fold was achieved using sweeping-CD-MEKC at acidic pH. This is the first report on the separation of two pairs of propiconazole enantiomers and all the enantiomers of fenbuconazole and tebuconazole using sweeping-CD-MEKC. The limit of detection (S/N=3) for the three triazole fungicides ranged from 0.09 to 0.1 microg/mL, which is well below the maximum residue limits (MRL) set by Codex Alimentarius Commission (CAC). Combination of solid-phase extraction (SPE) pretreatment and sweeping-CD-MEKC procedure was applied to the determination of selected triazole fungicides in grapes samples spiked at concentration 10-40 times lower than the MRL established by the CAC. The average recoveries of the selected fungicides in spiked grapes samples were good, ranging from 73% to 109% with RSD of 9-12% (n=3).
A molecular docking study, using molecular mechanics calculations with AutoDock and semi-empirical PM3 calculations, was used to predict the enantiodiscrimination of heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TMβCD) and ketoconazole (KTZ) enantiomers. A Density Functional Theory (DFT) single-point calculation at the level of B3LYP/6-311G (d,p) was performed for the PM3-optimized complexes to obtain more accurate binding energy and the electronic structures of the complexes. The difference in energies of the inclusion complexes between the KTZ enantiomers and TMβCD is probably a measure of chiral discrimination, which results in the separation of the enantiomers as observed in the experimental studies.
A sol-gel hybrid sorbent, methyltrimethoxysilane-tetraethoxysilane (MTMOS-TEOS) was successfully used as new dispersive solid phase extraction (dSPE) sorbent material in the determination of acrylamide in several Sudanese foods and analysis using GC-MS. Several important dSPE parameters were optimised. Under the optimised conditions, excellent linearity (r(2)>0.9998) was achieved using matrix matched standard calibration in the concentration range 50-1000 μg kg(-1). The limits of detection (LOD) and limit of quantification ranged from 9.1 to 12.8 μg/kg and 27.8-38.9 μg/kg, respectively. The precision (RSD%) of the method was ⩽6.6% and recoveries of acrylamide obtained were in the range of 88-103%, (n=3). The LOD obtained is comparable with the LODs of primary secondary amine dSPE. The proposed MTMOS-TEOS dSPE method is direct and safe for acrylamide analysis, showed reliable method validation performances and good cleanup effects. It was successfully applied to the analysis of acrylamide in real food samples.
A new microextraction procedure termed agarose gel liquid phase microextraction (AG-LPME) combined with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs) in water. The technique utilized an agarose gel disc impregnated with the acceptor phase (1-octanol). The extraction procedure was performed by allowing the solvent-impregnated agarose gel disc to tumble freely in the stirred sample solution. After extraction, the agarose gel disc was removed and subjected to centrifugation to disrupt its framework and to release the impregnated solvent, which was subsequently withdrawn and injected into the GC-MS for analysis. Under optimized extraction conditions, the new method offered high enrichment factors (89-177), trace level LODs (9-14ngL(-1)) and efficient extraction with good relative recoveries in the range of 93.3-108.2% for spiked drinking water samples. AG-LPME did not exhibit any problems related to solvent dissolution, and it provided high extraction efficiencies that were comparable to those of hollow fiber liquid phase microextraction (HF-LPME) and significantly higher than those of agarose film liquid phase microextraction (AF-LPME). This technique employed a microextraction format and utilized an environmentally compatible solvent holder that supported the green chemistry concept.
Heavy metals in cigarette tobacco such as iron may cause a serious damage on human health. Surveys showed that the accumulation of certain toxic heavy metals like cadmium, mercury, iron is very often due to the effect of smoking. This work involved 15 volunteers in two randomly divided groups having the habit of cigarette smoking over 15 cigarettes / day. Concentration level of iron in blood and urine before and after treatment using the herbal medicine, widely used in Europe, is analyzed. Determination of Iron concentration in blood and urine was calculated by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) according to the procedure DIN EN ISO 11885 ("E22" from April 1998). The analysis shows that the concentration of iron in blood and urine samples in both groups increased in some volunteers instead of decrease. The independent T-test shows that the mean of iron concentration in the group A and group B had no significant difference (p>0.05). The results suggested that the herbal medicine under test does not have significant influence on reduction of iron concentration levels.
A new microextraction procedure termed multi-walled carbon nanotube-impregnated agarose film microextraction (MWCNT-AFME) has been developed. The method utilized multi-walled carbon nanotubes (MWCNTs) immobilized in agarose film to serve as adsorbent in solid phase microextraction (SPME). The film was prepared by mixing the MWCNTs in agarose solution and drying the mixture in oven. Extraction of selected polycyclic aromatic hydrocarbons was performed by inserting a needle through circular MWCNT-impregnated agarose films (5 mm diameter) and the assembly was dipped into an agitated sample solution prior to micro high performance liquid chromatography-ultraviolet analysis. Back extraction was then performed using ultrasonication of the films in 100 μL of solvent. The film was discarded after single use, thus avoiding any analyte carry-over effect. Due to the mesoporous nature of the agarose film, the MWCNTs were immobilized easily within the film and thus allowing for close contact between adsorbent and analytes. Under the optimized extraction conditions, the technique achieved trace LODs in the range of 0.1 to 50 ng L(-1) for the targeted analytes, namely fluoranthene, phenanthrene and benzo[a]pyrene. The method was successfully applied to the analysis of spiked green tea beverage samples with good relative recoveries in the range of 91.1 to 107.2%. The results supported the feasibility of agarose to serve as adsorbent holder in SPME which then minimizes the consumption of chemicals and disposal cost of organic wastes.
Agarose film liquid phase microextraction (AF-LPME) procedure for the extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) in water has been investigated. Agarose film was used for the first time as an interface between donor and acceptor phases in liquid phase microextraction which allowed for selective extraction of the analytes prior to gas chromatography-mass spectrometry. Using 1-octanol as acceptor phase, high enrichment factors in the range of 57-106 for the targeted analytes (fluorene, phenanthrene, fluoranthene and pyrene) were achieved. Under the optimum extraction conditions, the method showed good linearity in the range of 0.1-200 μgL(-1), good correlation coefficients in the range of 0.9963-0.9999, acceptable reproducibility (RSD 6.1-9.2%, n=3), low limits of detection (0.01-0.04 μgL(-1)) and satisfactory relative recoveries (92.9-104.7%). As the AF-LPME device was non-expensive, reuse or recycle of the film was not required, thus eliminating the possibility of analytes carry-over between runs. The AF-LPME technique is environment-friendly and compatible with the green chemistry concept as agarose is biodegradable polysaccharide extracted from seaweed and the procedure requires small volume of organic solvent and generates little waste. The validated method was successfully applied to the analysis of the four analytes in river water samples.
A novel sol-gel hybrid methyltrimethoxysilane-tetraethoxysilane (MTMOS-TEOS) was produced and applied as sorbent for solid phase extraction (SPE). Five selected organophosphorus pesticides (OPPs) were employed as model compounds to evaluate the extraction performance of the synthesized sol-gel organic-inorganic hybrid MTMOS-TEOS. Analysis was performed using gas chromatography-mass spectrometry. Several important SPE parameters were optimized. Under the optimum extraction conditions, the method using the sol-gel organic-inorganic hybrid MTMOS-TEOS as SPE sorbent showed good linearity in the range of 0.001-1 μg L(-1), good repeatability (RSD 2.1-3.1%, n=5), low limits of detection at S/N=3 (0.5-0.9 pg mL(-1)) and limit of quantification (1-3 pg mL(-1), S/N=10). The performance of the MTMOS-TEOS SPE was compared to commercial C18 Supelclean SPE since C18 SPE is widely used for OPPs. The MTMOS-TEOS SPE method LOD was 500-600 × lower than the LOD of commercial C18 SPE. The LOD achieved with the sol-gel organic-inorganic hybrid MTMOS-TEOS SPE sorbent allowed the detection of these OPPs in drinking water well below the level set by European Union (EU) at 0.1 μg L(-1) of each pesticides. The developed MTMOS-TEOS SPE method was successfully applied to real sample analysis of the selected OPPs from several water samples and its application extended to the analysis of several fruits samples. Excellent recoveries and RSDs of the OPPs were obtained from the various water samples (recoveries: 97-111%, RSDs 0.4-2.8%, n=3) and fruit samples (recoveries: 96-111%), RSDs 1-4%, n=5) using the sol-gel organic-inorganic hybrid MTMOS-TEOS SPE sorbent. Recoveries and RSDs of OPPs from river water samples and fruit samples using C18 Supelclean SPE sorbent were 91-97%, RSD 0.9-2.6, n=3 and 86-96%, RSD 3-8%, n=5, respectively). The novel sol-gel hybrid MTMOS-TEOS SPE sorbent demonstrate the potential as an alternative inexpensive extraction sorbent for OPPs with higher sensitivity for the OPPs.
A new sol-gel hybrid coating, polydimethylsiloxane-2-hydroxymethyl-18-crown-6 (PDMS-2OHMe18C6) was prepared in-house for use in solid phase microextraction (SPME). The three compositions produced were assessed for its extraction efficiency towards three selected organophosphorus pesticides (OPPs) based on peak area extracted obtained from gas chromatography with electron capture detection. All three compositions showed superior extraction efficiencies compared to commercial 100 microm PDMS fiber. The composition showing best extraction performance was used to obtain optimized SPME conditions: 75 degrees C extraction temperature, 10 min extraction time, 120 rpm stirring rate, desorption time 5 min, desorption temperature 250 degrees C and 1.5% (w/v) of NaCl salt addition. The method detection limits (S/N=3) of the OPPs with the new sol-gel hybrid material ranged from 4.5 to 4.8 ng g(-1), which is well below the maximum residue limit set by Codex Alimentarius Commission and European Commission. Percentage recovery of OPPs from strawberry, green apple and grape samples with the new hybrid sol-gel SPME material ranged from 65 to 125% with good precision of the method (%RSD) ranging from 0.3 to 7.4%.
A cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) method with hydroxypropyl-gamma-cyclodextrin (HP-gamma-CD) as chiral selector for the enantiomeric separation of econazole is reported. Enantioseparation of econazole was successfully achieved by the optimized CD-MEKC system containing 40mM HP-gamma-CD, 50mM SDS and 20mM phosphate buffer (pH 8) solution with an analysis time of less than 9min. Calibration curves were linear for the two stereoisomers of econazole (r(2)>0.998). Good repeatabilities in the migration time, peak area and peak height were obtained in terms of RSD% ranging from 0.30 to 7.67%. Combination of solid-phase extraction (SPE) procedure using diol column and the CD-MEKC method was successfully applied to the determination of econazole in a formulated cream sample.
A CD-modified micellar EKC (CD-MEKC) method with 2-hydroxypropyl-gamma-CD (HP-gamma-CD) as chiral selector for the enantioseparation of three chiral triazole fungicides, namely hexaconazole, penconazole, and myclobutanil, is reported for the first time. Simultaneous enantioseparation of the three triazole fungicides was successfully achieved using a CD-MEKC system containing 40 mM HP-gamma-CD and 50 mM SDS in 25 mM phosphate buffer (pH 3.0) solution with resolutions (R(s)) greater than 1.60, peak efficiencies (N) greater than 200,000 for all enantiomers and an analysis time within 15 min compared to 36 min as previously reported using sulfated-beta-CD.
A new graphene-based tetraethoxysilane-methyltrimethoxysilane sol-gel hybrid magnetic nanocomposite (Fe3O4@G-TEOS-MTMOS) was synthesised, characterized and successfully applied in magnetic solid-phase extraction (MSPE) for simultaneous analysis of polar and non-polar organophosphorus pesticides from several water samples. The Fe3O4@G-TEOS-MTMOS nanocomposite was characterized using Fourier transform-infrared spectroscopy, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy and X-ray diffraction. Separation, determination and quantification were achieved using gas chromatography coupled with micro electron capture detector. Adsorption capacity of the sorbent was calculated using Langmuir equation. MSPE was linear in the range 100-1000 pg mL(-1) for phosphamidon and dimethoate, and 10-100 pg mL(-1) for chlorpyrifos and diazinon, with limit of detection (S/N = 3) of 19.8, 23.7, 1.4 and 2.9 pg mL(-1) for phosphamidon, dimethoate, diazinon and chlorpyrifos, respectively. The LODs obtained is well below the maximum residual level (100 pg mL(-1)) as set by European Union for pesticides in drinking water. Acceptable precision (%RSD) was achieved for intra-day (1.3-8.7%, n = 3) and inter-day (7.6-17.8%, n = 15) analyses. Fe3O4@G-TEOS-MTMOS showed high adsorption capacity (54.4-76.3 mg g(-1)) for the selected OPPs. No pesticide residues were detected in the water samples analysed. Excellent extraction recoveries (83-105%) were obtained for the spiked OPPs from tap, river, lake and sea water samples. The newly synthesised Fe3O4@G-TEOS-MTMOS showed high potential as adsorbent for OPPs analysis.
Agarose-chitosan-immobilized octadecylsilyl-silica (C18) film micro-solid phase extraction (μSPE) was developed and applied for the determination of phenanthrene (PHE) and pyrene (PYR) in chrysanthemum tea samples using high performance liquid chromatography-ultraviolet detection (HPLC-UV). The film of blended agarose and chitosan allows good dispersion of C18, prevents the leaching of C18 during application and enhances the film mechanical stability. Important μSPE parameters were optimized including amount of sorbent loading, extraction time, desorption solvent and desorption time. The matrix match calibration curves showed good linearity (r⩾0.994) over a concentration range of 1-500ppb. Under the optimized conditions, the proposed method showed good limits of detection (0.549-0.673ppb), good analyte recoveries (100.8-105.99%) and good reproducibilities (RSDs⩽13.53%, n=3) with preconcentration factors of 4 and 72 for PHE and PYR, respectively.
Magnetic solid phase extraction (MSPE) employing oil-palm fiber activated carbon (OPAC) modified with magnetite (Fe3O4) and polypyrrole (OPAC-Fe3O4-PPy) was successfully used for the determination of two organochlorine pesticides (OCPs), namely endosulfan and dieldrin in environmental water samples. Analysis was performed using gas chromatography with micro-electron capture detection (GC-μECD). The effects of three preparation variables, namely Fe3O4:OPAC ratio, amount of pyrrole monomer, and amount of FeCl3 oxidant were optimized using Box-Behnken design (BBD) (R2 < 0.99, p-value < 0.001%). The optimum conditions were as follows: Fe3O4:OPAC ratio of 2:1 w/w, 1 g of FeCl3 and 100 μL of pyrrole monomer. The experimental results obtained agreed satisfactorily with the model prediction (> 90% agreement). Optimized OPAC-Fe3O4-PPy composite was characterized using field emission scanning electron microscope, vibrating sample magnetometer and Fourier transform infrared spectroscopy. Four numerical parameters of MSPE procedure was optimized using BBD. The significance of the MSPE parameters were salt addition > sample solution pH > extraction time and desorption time. Under the optimized conditions (extraction time: 90 s, desorption time: 10 min, salt: 0%, and pH: 5.8), the method demonstrated good linearity (25-1000 ng L-1) with coefficients of determination, R2 > 0.991, and low detection limits for both endosulfan (7.3 ng L-1) and dieldrin (8.6 ng L-1). The method showed high analyte recoveries in the range of 98.6-103.5% for environmental water samples. The proposed OPAC-Fe3O4-PPy MSPE method offered good features such as sustainability, simplicity, and rapid extraction.
Graphene (G) modified with magnetite (Fe3O4) and sol-gel hybrid tetraethoxysilane-methyltrimethoxysilane (TEOS-MTMOS) was used as a clean-up adsorbent in magnetic solid phase extraction (MSPE) for direct determination of acrylamide in various food samples prior to gas chromatography-mass spectrometry analysis. Good linearity (R2=0.9990) was achieved for all samples using matrix-matched calibration. The limit of detection (LOD=3×SD/m) obtained was 0.061-2.89µgkg-1 for the studied food samples. Native acrylamide was found to be highest in fried potato with bright-fleshed (900.81µgkg-1) and lowest in toasted bread (5.02µgkg-1). High acrylamide relative recovery (RR=82.7-105.2%) of acrylamide was obtained for spiked (5 and 50µgkg-1) food samples. The Fe3O4@G-TEOS-MTMOS is reusable up to 7 times as a clean-up adsorbent with good recovery (>85%). The presence of native acrylamide was confirmed by mass analysis at m/z=71 ([C3H5NO]+) and m/z=55 ([C3H3O]+).
New-generation adsorbent, Fe3O4@SiO2/GO, was developed by modification of graphene oxide (GO) with silica-coated (SiO2) magnetic nanoparticles (Fe3O4). The synthesized adsorbent was characterized using Fourier transform infrared spectroscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy, and field emission scanning electron microscopy. The developed adsorbent was used for the removal and simultaneous preconcentration of As(III) and As(V) from environmental waters prior to ICP-MS analysis. Fe3O4@SiO2/GO provided high adsorption capacities, i.e., 7.51 and 11.46 mg g(-1) for As(III) and As(V), respectively, at pH 4.0. Adsorption isotherm, kinetic, and thermodynamic were investigated for As(III) and As(V) adsorption. Preconcentration of As(III) and As(V) were studied using magnetic solid-phase extraction (MSPE) method at pH 9.0 as the adsorbent showed selective adsorption for As(III) only in pH range 7-10. MSPE using Fe3O4@SiO2/GO was developed with good linearities (0.05-2.0 ng mL(-1)) and high coefficient of determination (R (2) = 0.9992 and 0.9985) for As(III) and As(V), respectively. The limits of detection (LODs) (3× SD/m, n = 3) obtained were 7.9 pg mL(-1) for As(III) and 28.0 pg mL(-1) for As(V). The LOD obtained is 357-1265× lower than the WHO maximum permissible limit of 10.0 ng mL(-1). The developed MSPE method showed good relative recoveries (72.55-109.71 %) and good RSDs (0.1-4.3 %, n = 3) for spring water, lake, river, and tap water samples. The new-generation adsorbent can be used for the removal and simultaneous preconcentration of As(III) and As(V) from water samples successfully. The adsorbent removal for As(III) is better than As(V).
This work aimed to develop a chiral separation method of ketoconazole enantiomers using electrokinetic chromatography. The separation was achieved using heptakis (2, 3, 6-tri-O-methyl)-β-cyclodextrin (TMβCD), a commonly used chiral selector (CS), as it is relatively inexpensive and has a low UV absorbance in addition to an anionic surfactant, sodium dodecyl sulfate (SDS). The influence of TMβCD concentration, phosphate buffer concentration, SDS concentration, buffer pH, and applied voltage were investigated. The optimum conditions for chiral separation of ketoconazole was achieved using 10 mM phosphate buffer at pH 2.5 containing 20 mM TMβCD, 5 mM SDS, and 1.0% (v/v) methanol with an applied voltage of 25 kV at 25 °C with a 5-s injection time (hydrodynamic injection). The four ketoconazole stereoisomers were successfully resolved for the first time within 17 min (total analysis time was 28 min including capillary conditioning). The migration time precision of this method was examined to give repeatability and reproducibility with RSDs ≤5.80% (n =3) and RSDs ≤8.88% (n =9), respectively.
The progress of novel sorbents and their function in preconcentration techniques for determination of trace elements is a topic of great importance. This review discusses numerous analytical approaches including the preparation and practice of unique modification of solid-phase materials. The performance and main features of ion-imprinting polymers, carbon nanotubes, biosorbents, and nanoparticles are described, covering the period 2007-2012. The perspective and future developments in the use of these materials are illustrated.
Cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) method was developed for simultaneous enantioseparation of three imidazole drugs namely tioconazole, isoconazole and fenticonazole. Three easily available and inexpensive cyclodextrins namely 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD) and heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) were evaluated to discriminate the six stereoisomers of the drugs. However, none of the three CDs gave a complete enantioseparation of the drugs. Effective enantioseparation of tioconazole, isoconazole and fenticonazole was achieved using a combination of 35 mM HP-γ-CD and 10 mM DM-β-CD as chiral selectors. The best separation using both HP-γ-CD and DM-β-CD (35 mM:10 mM) as chiral selectors were accomplished in background electrolyte (BGE) containing 35 mM phosphate buffer (pH 7.0), 50 mM sodium dodecyl sulfate (SDS) and 15% (v/v) acetonitrile at 27 kV and 30 °C with all peaks resolved in less than 15 min with resolutions, Rs 1.90-27.22 and peak efficiencies, N > 180 000. The developed method was linear over the concentration range of 25-200 mg l(-1) (r(2) > 0.998) and the detection limits (S/N = 3) of the three imidazole drugs were found to be 2.7-7.7 mg l(-1). The CD-MEKC method was successfully applied to the determination of the three imidazole drugs in spiked human urine sample and commercial cream formulation of tioconazole and isoconazole with good recovery (93.6-106.2%) and good RSDs ranging from 2.30-6.8%.
In this work, a two-phase hollow fiber liquid-phase microextraction (HF-LPME) method combined with gas chromatography-mass spectrometry (GC-MS) is developed to provide a rapid, selective and sensitive analytical method to determine polycyclic aromatic hydrocarbons (PAHs) in fresh milk. The standard addition method is used to construct calibration curves and to determine the residue levels for the target analytes, fluorene, phenanthrene, fluoranthene, pyrene and benzo[a]pyrene, thus eliminating sample pre-treatment steps such as pH adjustment. The HF-LPME method shows dynamic linearity from 5 to 500 µg/L for all target analytes with R(2) ranging from 0.9978 to 0.9999. Under optimized conditions, the established detection limits range from 0.07 to 1.4 µg/L based on a signal-to-noise ratio of 3:1. Average relative recoveries for the determination of PAHs studied at 100 µg/L spiking levels are in the range of 85 to 110%. The relative recoveries are slightly higher than those obtained by conventional solvent extraction, which requires saponification steps for fluorene and phenanthrene, which are more volatile and heat sensitive. The HF-LPME method proves to be simple and rapid, and requires minimal amounts of organic solvent that supports green analysis.