Displaying all 3 publications

Abstract:
Sort:
  1. Verasoundarapandian G, Wong CY, Shaharuddin NA, Gomez-Fuentes C, Zulkharnain A, Ahmad SA
    PMID: 33572432 DOI: 10.3390/ijerph18041671
    The globe is presently reliant on natural resources, fossil fuels, and crude oil to support the world's energy requirements. Human exploration for oil resources is always associated with irreversible effects. Primary sources of hydrocarbon pollution are instigated through oil exploration, extraction, and transportation in the Arctic region. To address the state of pollution, it is necessary to understand the mechanisms and processes of the bioremediation of hydrocarbons. The application of various microbial communities originated from the Arctic can provide a better interpretation on the mechanisms of specific microbes in the biodegradation process. The composition of oil and consequences of hydrocarbon pollutants to the various marine environments are also discussed in this paper. An overview of emerging trends on literature or research publications published in the last decade was compiled via bibliometric analysis in relation to the topic of interest, which is the microbial community present in the Arctic and Antarctic marine environments. This review also presents the hydrocarbon-degrading microbial community present in the Arctic, biodegradation metabolic pathways (enzymatic level), and capacity of microbial degradation from the perspective of metagenomics. The limitations are stated and recommendations are proposed for future research prospects on biodegradation of oil contaminants by microbial community at the low temperature regions of the Arctic.
  2. Puasa NA, Zulkharnain A, Verasoundarapandian G, Wong CY, Zahri KNM, Merican F, et al.
    Animals (Basel), 2021 Aug 26;11(9).
    PMID: 34573474 DOI: 10.3390/ani11092505
    Antarctica is a relatively pristine continent that attracts scientists and tourists alike. However, the risk of environmental pollution in Antarctica is increasing with the increase in the number of visitors. Recently, there has been a surge in interest regarding diesel, heavy metals and microplastics pollution. Contamination from these pollutants poses risks to the environment and the health of organisms inhabiting the continent. Penguins are one of the most prominent and widely distributed animals in Antarctica and are at major risk due to pollution. Even on a small scale, the impacts of pollution toward penguin populations are extensive. This review discusses the background of penguins in Antarctica, the anthropogenic pollution and cases, as well as the impacts of diesel, heavy metals and microplastics toxicities on penguins. The trends of the literature for the emerging risks of these pollutants are also reviewed through a bibliometric approach and network mapping analysis. A sum of 27 articles are analyzed on the effects of varying pollutants on penguins in Antarctica from 2000 to 2020 using the VOSviewer bibliometric software, Microsoft Excel and Tableau Public. Research articles collected from the Scopus database are evaluated for the most applicable research themes according to the bibliometric indicators (articles, geography distribution, annual production, integrated subject areas, key source journals and keyword or term interactions). Although bibliometric studies on the present research theme are not frequent, our results are sub-optimal due to the small number of search query matches from the Scopus database. As a result, our findings offer only a fragmentary comprehension of the topics in question. Nevertheless, this review provides valuable inputs regarding prospective research avenues for researchers to pursue in the future.
  3. Verasoundarapandian G, Zakaria NN, Shaharuddin NA, Khalil KA, Puasa NA, Azmi AA, et al.
    Plants (Basel), 2021 Nov 16;10(11).
    PMID: 34834831 DOI: 10.3390/plants10112468
    Oil spill incidents are hazardous and have prolonged damage to the marine environment. Management and spill clean-up procedures are practical and rapid, with several shortcomings. Coco peat (CP) and coco fibre (CF) are refined from coconut waste, and their abundance makes them desirable for diesel spillage treatment. Using a filter-based system, the selectivity of coco peat sorbent was tested using CP, CF and peat-fibre mix (CPM). CP exhibited maximal diesel sorption capacity with minimal seawater uptake, thus being selected for further optimisation analysis. The heat treatment considerably improved the sorption capacity and efficiency of diesel absorbed by CP, as supported by FTIR and VPSEM-EDX analysis. Conventional one-factor-at-a-time (OFAT) examined the performance of diesel sorption by CP under varying parameters, namely temperature, time of heating, packing density and diesel concentration. The significant factors were statistically evaluated using response surface methodology (RSM) via Plackett-Burman design (PB) and central composite design (CCD). Three significant (p < 0.05) factors (time, packing density and diesel concentration) were identified by PB and further analysed for interactions among the parameters. CCD predicted efficiency of diesel absorbed at 59.92% (71.90 mL) (initial diesel concentration of 30% v/v) and the experimental model validated the design with 59.17% (71.00 mL) diesel sorbed at the optimised conditions of 14.1 min of heating (200 °C) with packing density of 0.08 g/cm3 and 30% (v/v) of diesel concentration. The performance of CP in RSM (59.17%) was better than that in OFAT (58.33%). The discoveries imply that natural sorbent materials such as CP in oil spill clean-up operations can be advantageous and environmentally feasible. This study also demonstrated the diesel-filter system as a pilot study for the prospective up-scale application of oil spills.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links