Displaying all 8 publications

Abstract:
Sort:
  1. Velusamy P, Su CH, Venkat Kumar G, Adhikary S, Pandian K, Gopinath SC, et al.
    PLoS One, 2016;11(6):e0157612.
    PMID: 27304672 DOI: 10.1371/journal.pone.0157612
    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.
  2. Velusamy P, Su CH, Kannan K, Kumar GV, Anbu P, Gopinath SCB
    PMID: 33751641 DOI: 10.1002/bab.2146
    Overuse of antibiotics has led to the development of multi drug resistant strains. Antibiotic resistance is a major drawback in the biomedical field since medical implants are prone to infection by biofilms of antibiotic resistant strains of bacteria. With increasing prevalence of antibiotic resistant pathogenic bacteria, the search for alternative method is utmost importance. In this regard, magnetic nanoparticles are commonly used as a substitute for antibiotics that can circumvent the problem of biofilms growth on the surface of biomedical implants. Iron oxide nanoparticles (IONPs) have unique magnetic properties that can be exploited in various ways in the biomedical applications. IONPs are engineered employing different methods to induce surface functionalization that include the use of polyethyleneimine and oleic acid. IONPs have a mechanical effect on biofilms when in presence of an external magnet. In this review, a detailed description of surface engineered magnetic nanoparticles as ideal antibacterial agents is provided, accompanied by various methods of literature review. This article is protected by copyright. All rights reserved.
  3. Pachaiappan R, Tamboli E, Acharya A, Su CH, Gopinath SCB, Chen Y, et al.
    PLoS One, 2018;13(3):e0193717.
    PMID: 29494663 DOI: 10.1371/journal.pone.0193717
    Enzyme hydrolysates (trypsin, papain, pepsin, α-chymotrypsin, and pepsin-pancreatin) of Tinospora cordifolia stem proteins were analyzed for antioxidant efficacy by measuring (1) 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging activity, (2) 2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radical scavenging capacity, and (3) Fe2+ chelation. Trypsin hydrolysate showed the strongest DPPH• scavenging, while α-chymotrypsin hydrolysate exhibited the highest ABTS+ scavenging and Fe2+ chelation. Undigested protein strongly inhibited the gastrointestinal enzymes, trypsin (50% inhibition at enzyme/substrate ratio = 1:6.9) and α-chymotrypsin (50% inhibition at enzyme/substrate ratio = 1:1.82), indicating the prolonged antioxidant effect after ingestion. Furthermore, gel filtration purified peptide fractions of papain hydrolysates exhibited a significantly higher ABTS+ and superoxide radical scavenging as compared to non-purified digests. Active fraction 9 showing the highest radical scavenging ability was further purified and confirmed by MALDI-TOF MS followed by MS/MS with probable dominant peptide sequences identified are VLYSTPVKMWEPGR, VITVVATAGSETMR, and HIGININSR. The obtained results revealed that free radical scavenging capacity of papain hydrolysates might be related to its consistently low molecular weight hydrophobic peptides.
  4. Velusamy P, Kiruba K, Su CH, Arun V, Anbu P, Gopinath SCB, et al.
    J King Saud Univ Sci, 2021 Dec;33(8):101648.
    PMID: 34690467 DOI: 10.1016/j.jksus.2021.101648
    SARS-CoV2 is a member of human coronaviruses and is the causative agent of the present pandemic COVID-19 virus. In order to control COVID-19, studies on viral structure and mechanism of infectivity and pathogenicity are sorely needed. The spike (S) protein is comprised of S1 & S2 subunits. These spike protein subunits enable viral attachment by binding to the host cell via ACE-2 (angiotensin converting enzyme-2) receptor, thus facilitating the infection. During viral entry, one of the key steps is the cleavage of the S1-S2 spike protein subunits via surface TMPRSS2 (transmembrane protease serine 2) and results in viral infection. Hence, the S-protein is critical for the viral attachment and penetration into the host. The rapid advancement of our knowledge on the structural and functional aspects of the spike protein could lead to development of numerous candidate vaccines against SARS-CoV2. Here the authors discuss about the structure of spike protein and explore its related functions. Our aim is to provide a better understanding that may aid in fighting against CoVID-19 and its treatment.
  5. Hui H, Gopinath SCB, Ismail ZH, Chen Y, Pandian K, Velusamy P
    Biotechnol Appl Biochem, 2023 Apr;70(2):581-591.
    PMID: 35765758 DOI: 10.1002/bab.2380
    Myocardial infarction (MI) is highly related to cardiac arrest leading to death and organ damage. Radiological techniques and electrocardiography have been used as preliminary tests to diagnose MI; however, these techniques are not sensitive enough for early-stage detection. A blood biomarker-based diagnosis is an immediate solution, and due to the high correlation of troponin with MI, it has been considered to be a gold-standard biomarker. In the present research, the cardiac biomarker troponin I (cTnI) was detected on an interdigitated electrode sensor with various surface interfaces. To detect cTnI, a capture aptamer-conjugated gold nanoparticle probe and detection antibody probe were utilized and compared through an alternating sandwich pattern. The surface metal oxide morphology of the developed sensor was proven by microscopic assessments. The limit of detection with the aptamer-gold-cTnI-antibody sandwich pattern was 100 aM, while it was 1 fM with antibody-gold-cTnI-aptamer, representing 10-fold differences. Further, the high performance of the sensor was confirmed by selective cTnI determination in serum, exhibiting superior nonfouling. These methods of determination provide options for generating novel assays for diagnosing MI.
  6. Soundararajan P, Parthasarathy S, Sakthivelu M, Karuppiah KM, Velusamy P, Gopinath SCB, et al.
    Curr Med Chem, 2023 Oct 18.
    PMID: 37877148 DOI: 10.2174/0109298673250752230921090452
    Edible oils are inevitable requisites in the human diet as they are enriched with essential fatty acids, vitamins, carotenoids, sterols, and other antioxidants. Due to their nutritive value and commercial significance, edible oils have been used for food preparation for many centuries. The use of global consumption of edible oils has dramatically increased throughout the world in the 21st century owing to their incredible application in all kinds of food preparation. However, a variety of pollutants, such as pesticides, toxic chemicals, heavy metals, and environmental pollution, have contributed to the contamination of edible oils. Furthermore, the benzophenanthridine alkaloids, sanguinarine, dihydrosanguinarine, butter yellow, and other several agents are added intentionally, which are known to cause a number of human diseases. Apart from this, repeated heating and reusing of oils results in trans fats, and lipid peroxidation alters the fatty acid composition, which adversely affects the health of consumers and increases the risk of cardiovascular diseases. Moreover, the prevention of edible oil contamination in human health at various levels is inevitable to ensure consumer safety. Hence, the present review provides an overview of vegetable cooking oils and the health ailments that detection techniques are focused on.
  7. Prabhu D, Shankari G, Rajamanikandan S, Jeyakanthan J, Velusamy P, Gopinath SCB, et al.
    Int J Biol Macromol, 2024 Nov;281(Pt 1):136976.
    PMID: 39490491 DOI: 10.1016/j.ijbiomac.2024.136976
    Serratia marcescens is an opportunistic human pathogen that causes urinary tract infections, ocular lens infections, and respiratory tract infections. S. marcescens employs various defense mechanisms to evade antibiotics, one of which is mediated by aminoglycoside N-acetyltransferase (AAC). In this mechanism, the enzyme AAC facilitates the transfer and linkage of the acetyl moiety from the donor substrate acetyl-coenzyme A to specific positions on antibiotics. This modification alters the antibiotic's structure, leading to the inactivation of aminoglycoside antibiotics. In the current scenario, antibiotic resistance has become a global threat, and targeting the enzymes that mediate resistance is considered crucial to combat this issue. The study aimed to address the increasing global threat of antibiotic resistance in Serratia marcescens by targeting the aminoglycoside N-acetyltransferase (AAC (6')) enzyme, which inactivates aminoglycoside antibiotics through acetylation. Due to the absence of experimental structure, we constructed a homology model of aminoglycoside N (6')-acetyltransferase (AAC (6')) of S. marcescens using the atomic structure of aminoglycoside N-acetyltransferase AAC (6')-Ib (PDB ID: 1V0C) as a template. The stable architecture and integrity of the modelled AAC (6') structure were analyzed through a 100 ns simulation. Structure-guided high-throughput screening of four small molecule databases (Binding, Life Chemicals, Zinc, and Toslab) resulted in the identification of potent inhibitors against AAC (6'). The hits obtained from screening were manually clustered, and the five hit molecules were shortlisted based on the docking score, which are observed in the range of -17.09 kcal/mol to -11.95 kcal/mol. These selected five molecules displayed acceptable pharmacological properties in ADME predictions. The binding free energy calculations, and molecular dynamics simulations of ligand bound AAC (6') complexes represented higher affinity and stable binding. The selected molecules demonstrated stable binding with AAC (6'), indicating their strong potential to hamper the binding of aminoglycoside in the respective site. and thereby inhibit. This process mitigates enzyme mediated AAC (6') activity on aminoglycosides and reverse the bactericidal function of aminoglycosides, and also this method could serve as a platform for the development of potential antimicrobials.
  8. Vyas K, Prabaker S, Prabhu D, Sakthivelu M, Rajamanikandan S, Velusamy P, et al.
    Int J Biol Macromol, 2024 Feb;259(Pt 1):129222.
    PMID: 38185307 DOI: 10.1016/j.ijbiomac.2024.129222
    The substantial nutritional content and diversified biological activity of plant-based nutraceuticals are due to polyphenolic chemicals. These chemicals are important and well-studied plant secondary metabolites. Their protein interactions are extensively studied. This relationship is crucial for the logical development of functional food and for enhancing the availability and usefulness of polyphenols. This study highlights the influence of protein types and polyphenols on the interaction, where the chemical bindings predominantly consist of hydrophobic interactions and hydrogen bonds. The interaction between polyphenolic compounds (PCs) and digestive enzymes concerning their inhibitory activity has not been fully studied. Therefore, we have examined the interaction of four digestive enzymes (α-amylase, pepsin, trypsin, and α-chymotrypsin) with four PCs (curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone) through in silico and in vitro approaches. In vitro plate assays, enzyme kinetics, spectroscopic assays, molecular docking, and simulations were performed. We observed all these PCs have significant docking scores and preferable interaction with the active site of the digestive enzymes, resulting in the reduction of enzyme activity. The enzyme-substrate binding mechanism was determined using the Lineweaver Burk plot, indicating that the inhibition occurred competitively. Among four PCs diosmin and morin has the highest interaction energy over digestive enzymes with IC50 value of 1.13 ± 0.0047 and 1.086 ± 0.0131 μM. Kinetic studies show that selected PCs inhibited pepsin, trypsin, and chymotrypsin competitively and inhibited amylase in a non-competitive manner, especially by 2',3',4'-trihydroxychalcone. This study offers insights into the mechanisms by which the selected PCs inhibit the enzymes and has the potential to enhance the application of curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone as natural inhibitors of digestive enzymes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links