Displaying all 3 publications

Abstract:
Sort:
  1. Vera M, Cheak BB, Chmelíčková H, Bavanandan S, Goh BL, Abdul Halim AG, et al.
    PLoS One, 2021;16(12):e0258440.
    PMID: 34882678 DOI: 10.1371/journal.pone.0258440
    Adapted automated peritoneal dialysis (aAPD), comprising a sequence of dwells with different durations and fill volumes, has been shown to enhance both ultrafiltration and solute clearance compared to standard peritoneal dialysis with constant time and volume dwells. The aim of this non-interventional study was to describe the different prescription patterns used in aAPD in clinical practice and to observe outcomes characterizing volume status, dialysis efficiency, and residual renal function over 1 year. Prevalent and incident, adult aAPD patients were recruited during routine clinic visits, and aAPD prescription, volume status, residual renal function and laboratory data were documented at baseline and every quarter thereafter for 1 year. Treatments were prescribed according to the nephrologist's medical judgement in accordance with each center's clinical routine. Of 180 recruited patients, 160 were analyzed. 27 different aAPD prescription patterns were identified. 79 patients (49.4%) received 2 small, short dwells followed by 3 long, large dwells. During follow-up, volume status changed only marginally, with visit mean values ranging between 1.59 (95% confidence interval: 1.19; 1.99) and 1.97 (1.33; 2.61) L. Urine output and creatinine clearance decreased significantly, accompanied by reductions in ultrafiltration and Kt/V. 25 patients (15.6%) received a renal transplant and 15 (9.4%) were changed to hemodialysis. Options for individualization offered by aAPD are actually used in practice for optimized treatment. Changes observed in renal function and dialysis efficiency measures reflect the natural course of chronic kidney disease. No safety events were observed during the study period.
  2. Campa D, Pastore M, Capurso G, Hackert T, Di Leo M, Izbicki JR, et al.
    Int J Cancer, 2018 01 15;142(2):290-296.
    PMID: 28913878 DOI: 10.1002/ijc.31047
    Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a five-year survival of less than 6%. Chronic pancreatitis (CP), an inflammatory process in of the pancreas, is a strong risk factor for PDAC. Several genetic polymorphisms have been discovered as susceptibility loci for both CP and PDAC. Since CP and PDAC share a consistent number of epidemiologic risk factors, the aim of this study was to investigate whether specific CP risk loci also contribute to PDAC susceptibility. We selected five common SNPs (rs11988997, rs379742, rs10273639, rs2995271 and rs12688220) that were identified as susceptibility markers for CP and analyzed them in 2,914 PDAC cases, 356 CP cases and 5,596 controls retrospectively collected in the context of the international PANDoRA consortium. We found a weak association between the minor allele of the PRSS1-PRSS2-rs10273639 and an increased risk of developing PDAC (ORhomozygous  = 1.19, 95% CI 1.02-1.38, p = 0.023). Additionally all the SNPs confirmed statistically significant associations with risk of developing CP, the strongest being PRSS1-PRSS2-rs10273639 (ORheterozygous  = 0.51, 95% CI 0.39-0.67, p = 1.10 × 10-6 ) and MORC4-rs 12837024 (ORhomozygous  = 2.07 (1.55-2.77, ptrend  = 0.7 × 10-11 ). Taken together, the results from our study do not support variants rs11988997, rs379742, rs10273639, rs2995271 and rs12688220 as strong predictors of PDAC risk, but further support the role of these SNPs in CP susceptibility. Our study suggests that CP and PDAC probably do not share genetic susceptibility, at least in terms of high frequency variants.
  3. Campa D, Pastore M, Gentiluomo M, Talar-Wojnarowska R, Kupcinskas J, Malecka-Panas E, et al.
    Oncotarget, 2016 08 30;7(35):57011-57020.
    PMID: 27486979 DOI: 10.18632/oncotarget.10935
    The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links