Displaying all 3 publications

Abstract:
Sort:
  1. Kailaivasan TH, Timbrell VL, Solley G, Smith WB, McLean-Tooke A, van Nunen S, et al.
    PMID: 32025301 DOI: 10.1002/cti2.1103
    Objective: Globally, grass pollens (GP) are major aeroallergen triggers of allergic rhinitis (AR) and asthma. However, patterns of allergic sensitisation to pollen of temperate (Pooideae: Lolium perenne) and subtropical (Chloridoideae: Cynodon dactylon and Panicoideae: Paspalum notatum) subfamilies in diverse climates remain unclear. This study aims to evaluate the level of allergic sensitisation and IgE specificity for major GP allergens representing the three subfamilies in biogeographically distinct regions.

    Methods: Participants (GP-allergic with AR, 330; non-atopic, 29; other allergies, 54) were recruited in subtropical: Queensland, and temperate: New South Wales, Western and South Australia, regions. Clinical history, skin prick test (SPT), total and specific IgE to GP and purified allergens (ImmunoCAP) were evaluated. Cross-inhibition of sIgE with Pas n 1, Cyn d 1 and Lol p 1 by GP extracts was investigated.

    Results: Queensland participants showed higher sensitisation to P. notatum and C. dactylon than L. perenne GP. sIgE was higher to Pas n 1 and Cyn d 1, and sIgE to Pas n 1 and Cyn d 1 was inhibited more by Panicoideae and Chloridoideae, respectively, than Pooideae GP. Conversely, participants from temperate regions showed highest sensitisation levels to L. perenne GP and Lol p 1, and sIgE to Lol p 1 was inhibited more by Pooideae than other GP.

    Conclusion: Levels and patterns of sensitisation to subtropical and temperate GP in AR patients depended on biogeography. Knowledge of the specificity of sensitisation to local allergens is important for optimal diagnosis and choice of allergen-specific immunotherapy to maximise benefit.

  2. Chang AB, Fong SM, Yeo TW, Ware RS, McCallum GB, Nathan AM, et al.
    BMJ Open, 2019 Apr 24;9(4):e026411.
    PMID: 31023759 DOI: 10.1136/bmjopen-2018-026411
    INTRODUCTION: Early childhood pneumonia is a common problem globally with long-term complications that include bronchiectasis and chronic obstructive pulmonary disease. It is biologically plausible that these long-term effects may be minimised in young children at increased risk of such sequelae if any residual lower airway infection and inflammation in their developing lungs can be treated successfully by longer antibiotic courses. In contrast, shortened antibiotic treatments are being promoted because of concerns over inducing antimicrobial resistance. Nevertheless, the optimal treatment duration remains unknown. Outcomes from randomised controlled trials (RCTs) on paediatric pneumonia have focused on short-term (usually <2 weeks) results. Indeed, no long-term RCT-generated outcome data are available currently. We hypothesise that a longer antibiotic course, compared with the standard treatment course, reduces the risk of chronic respiratory symptoms/signs or bronchiectasis 24 months after the original pneumonia episode.

    METHODS AND ANALYSIS: This multicentre, parallel, double-blind, placebo-controlled randomised trial involving seven hospitals in six cities from three different countries commenced in May 2016. Three-hundred-and-fourteen eligible Australian Indigenous, New Zealand Māori/Pacific and Malaysian children (aged 0.25 to 5 years) hospitalised for community-acquired, chest X-ray (CXR)-proven pneumonia are being recruited. Following intravenous antibiotics and 3 days of amoxicillin-clavulanate, they are randomised (stratified by site and age group, allocation-concealed) to receive either: (i) amoxicillin-clavulanate (80 mg/kg/day (maximum 980 mg of amoxicillin) in two-divided doses or (ii) placebo (equal volume and dosing frequency) for 8 days. Clinical data, nasopharyngeal swab, bloods and CXR are collected. The primary outcome is the proportion of children without chronic respiratory symptom/signs of bronchiectasis at 24 months. The main secondary outcomes are 'clinical cure' at 4 weeks, time-to-next respiratory-related hospitalisation and antibiotic resistance of nasopharyngeal respiratory bacteria.

    ETHICS AND DISSEMINATION: The Human Research Ethics Committees of all the recruiting institutions (Darwin: Northern Territory Department of Health and Menzies School of Health Research; Auckland: Starship Children's and KidsFirst Hospitals; East Malaysia: Likas Hospital and Sarawak General Hospital; Kuala Lumpur: University of Malaya Research Ethics Committee; and Klang: Malaysian Department of Health) have approved the research protocol version 7 (13 August 2018). The RCT and other results will be submitted for publication.

    TRIAL REGISTRATION: ACTRN12616000046404.

  3. Kok HC, McCallum GB, Yerkovich ST, Grimwood K, Fong SM, Nathan AM, et al.
    Pediatr Infect Dis J, 2024 Sep 01;43(9):872-879.
    PMID: 38830139 DOI: 10.1097/INF.0000000000004407
    BACKGROUND: Pediatric community-acquired pneumonia (CAP) can lead to long-term respiratory sequelae, including bronchiectasis. We determined if an extended (13-14 days) versus standard (5-6 days) antibiotic course improves long-term outcomes in children hospitalized with CAP from populations at high risk of chronic respiratory disease.

    METHODS: We undertook a multicenter, double-blind, superiority, randomized controlled trial involving 7 Australian, New Zealand, and Malaysian hospitals. Children aged 3 months to ≤5 years hospitalized with radiographic-confirmed CAP who received 1-3 days of intravenous antibiotics, then 3 days of oral amoxicillin-clavulanate, were randomized to either extended-course (8-day oral amoxicillin-clavulanate) or standard-course (8-day oral placebo) arms. Children were reviewed at 12 and 24 months. The primary outcome was children with the composite endpoint of chronic respiratory symptoms/signs (chronic cough at 12 and 24 months; ≥1 subsequent hospitalized acute lower respiratory infection by 24 months; or persistent and/or new chest radiographic signs at 12-months) at 24-months postdischarge, analyzed by intention-to-treat, where children with incomplete follow-up were assumed to have chronic respiratory symptoms/signs ("worst-case" scenario).

    RESULTS: A total of 324 children were randomized [extended-course (n = 163), standard-course (n = 161)]. For our primary outcome, chronic respiratory symptoms/signs occurred in 97/163 (60%) and 94/161 (58%) children in the extended-courses and standard-courses, respectively [relative risk (RR) = 1.02, 95% confidence interval (CI): 0.85-1.22]. Among children where all sub-composite outcomes were known, chronic respiratory symptoms/signs between groups, RR = 1.10, 95% CI: 0.69-1.76 [extended-course = 27/93 (29%) and standard-course = 24/91 (26%)]. Additional sensitivity analyses also revealed no between-group differences.

    CONCLUSION: Among children from high-risk populations hospitalized with CAP, 13-14 days of antibiotics (versus 5-6 days), did not improve long-term respiratory outcomes.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links